首页|融合自适应滑动集合经验模态分解的机器学习月径流预测方法

融合自适应滑动集合经验模态分解的机器学习月径流预测方法

扫码查看
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入"未来信息"在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM).并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM 模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值.与ELM*、BES-LEM*、BES-ELM、EEMD-BES-ELM(传统"捆绑分解")模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173 m3/s、均方根误差为8.282 m3/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高.结果可为干旱区月径流预测研究提供参考.
A Machine Learning Monthly Runoff Prediction Method Incorporating Adaptive Sliding Ensemble Empirical Mode Decomposition
In order to improve the accuracy of monthly runoff prediction and solve the problem that the traditional de-composition and integration of runoff prediction method introduces"future information"in advance,which cannot be real-ized in practical engineering,a monthly runoff prediction model(ASEEMD-BES-ELM)based on the coupling of adaptive sliding ensemble empirical mode decomposition(ASEEMD),bald eagle search(BES)algorithm,and extreme learning machine(ELM)was proposed.Taking the monthly runoff sequence of Manas River from 1957 to 2014 as an example,firstly,the original monthly runoff sequence was adaptively decomposed using ASEEMD to obtain several sub-sequences.Secondly,each sub-sequences were inputted into the ELM model optimized by combining the BES algorithm and the grid search for prediction,respectively.Finally,the prediction results of each sub-sequence were accumulated to obtain the fi-nal monthly runoff prediction value.Comparison with the ELM*,BES-ELM*,BES-ELM and EEMD-BES-ELM(tradi-tional"bundle decomposition")models show that the Nash-Sutcliffe efficiency coefficient of the ASEEMD-BES-ELM model was 0.971,the mean absolute error was 5.173 m3/s,and the root-mean-square error was 8.282 m3/s,and the mean absolute percentage error was 16.033%,which has the highest prediction accuracy in line with the practical applica-tion.The results can provide a reference for the monthly runoff prediction in arid areas.

monthly runoff predictionadaptation decompositionensemble empirical mode decompositionBald ea-gle search algorithmextreme learning machineManas River

胡永旭、乔长录、刘延雪、李旭

展开 >

石河子大学水利建筑工程学院,新疆 石河子 832000

寒旱区生态水利工程兵团重点实验室,新疆 石河子 832000

月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河

新疆生产建设兵团科技计划项目国家自然科学基金项目

2022DB02452169005

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(10)
  • 5