首页|基于PE-HMM的渡槽结构运行状态评价

基于PE-HMM的渡槽结构运行状态评价

扫码查看
随着远距离、高流量、大跨度渡槽工程的不断发展,渡槽运行状态监测与评价日益重要.以广东省罗定市长岗坡渡槽工程为例,基于渡槽泄流振动位移数据,提出一种基于排列熵算法(PE)和隐马尔可夫模型(HMM)的渡槽运行状态评价方法.首先,运用排列熵算法和K-means法提取振动位移数据基本特征,形成HMM模型的观测状态序列.其次,运用 HMM算法训练模型参数,以平均误差百分比为指标,筛选出最佳模型参数,并以该参数为初值再次训练得到渡槽运行期隐状态的概率分布.最后,结合渡槽运行期隐状态对应的分值等级及概率值,求得渡槽运行状态期望值,从而量化评价渡槽运行状态.结果表明,基于PE-HMM法的渡槽运行状态评价结果与实地勘察结论一致,可见PE-HMM法能够从渡槽振动位移数据角度出发,真实反映渡槽结构运行状态,具有较高的评判精度与工程指导意义.
PE-HMM Based Operation Status Evaluation Method for Aqueduct
With the continuous development of long-distance,high-flow,and large-span aqueduct projects,the moni-toring and evaluation of the aqueduct's operating status has become increasingly important.The Changgangpo aqueduct project in Luoding City,Guangdong Province is used as the project for the study.Based on the discharge vibration dis-placement data of the aqueduct,a method based on Permutation Entropy(PE)and Hidden Markov Model(HMM)for e-valuation of aqueduct operation damage state was proposed.Firstly,the Permutation Entropy algorithm and the K-means method were adopted to extract the basic features of the vibration data for generating the observed state sequences of the HMM model.Secondly,the model parameters were trained using the HMM algorithm,and the mean absolute percent-age error was used as a metric to filter the best model parameters.These parameters as the initial values were used to re-train to obtain the probability distribution of the hidden state during the operation of the aqueduct.Finally,combining the score level and probability value corresponding to the hidden state of the aqueduct during the operation period,the desired value of the operational status of the aqueduct was obtained to quantitatively assess the operational status of the aqueduct.The evaluation results of aqueduct operation state based on PE-HMM method are consistent with the results of field in-vestigation.It can be seen that the PE-HMM method can truly reflect the running state of aqueduct structure from the per-spective of aqueduct vibration displacement data,and has high evaluation accuracy and engineering guiding significance.

aqueductevaluation of operating statuspermutation entropy algorithmHidden Markov Model

张翌娜、李紫瑜、张建伟、黄锦林

展开 >

黄河水利职业技术学院,河南 开封 475004

华北水利水电大学水利学院,河南 郑州 450046

广东省水利水电科学研究院,广东 广州 510610

渡槽 运行状态评价 排列熵算法 隐马尔可夫模型

国家自然科学基金项目广东省水利科技创新项目

522791332020-18

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(10)
  • 8