首页|基于PS-InSAR技术与M-LSTM的小型水库大坝及岸坡变形预测模型研究

基于PS-InSAR技术与M-LSTM的小型水库大坝及岸坡变形预测模型研究

扫码查看
对小型水库大坝及岸坡变形进行准确预测是水库现代化管理工作的重要环节.为提高小型水库大坝及岸坡变形预测的准确性,基于PS-InSAR技术与 M-LSTM神经网络(多变量长短记忆法),提出小型水库大坝及岸坡变形预测方法,首先利用PS-InSAR技术获取浏阳市4座典型小型水库坝体及坡岸变形特征,然后优化出3种变形影响因素,建立基于 M-LSTM的小型水库大坝及岸坡变形预测模型,并对其准确性进行了验证.结果表明,PS-InSAR技术在小型水库坝体及坡岸变形监测中具有良好的可操作性;M-LSTM 模型比LSTM模型具有更好的预测效果,其平均判定系数达到了0.91,平均绝对误差、平均均方根误差也仅为0.012、0.010,可见 M-LSTM模型在小型水库大坝及岸坡变形预测中有较好的适用性.
Deformation Prediction Model of Small Reservoirs Dams and Bank Slopes Based on PS-InSAR Technique and M-LSTM
Accurate prediction of dam and bank slope deformation of small reservoirs is an important link of reservoir modernization management.This paper proposes a method for predicting the deformation of small reservoir dams and slopes based on PS-InSAR technology and M-LSTM neural network(Multivariate Long Short-Term Memory).Firstly,the PS-InSAR technology was used to obtain the deformation characteristics of four typical small reservoir dams and slopes in Liuyang City.Then,three deformation influencing factors were optimized to establish a deformation prediction model of small reservoir dams and slopes based on M-LSTM.The accuracy of the model was verified.The results show that the PS-InSAR technology has good operability in monitoring the deformation of small reservoir dams and slopes.The M-LSTM model has better prediction performance compared to the LSTM model,with an average coefficient of determi-nation reaching 0.91.The average absolute error and root mean square error are only 0.012 and 0.010,respectively,in-dicating the good applicability of the M-LSTM model in predicting the deformation of small reservoir dams and slopes.

small reservoirPS-InSARM-LSTMdeformation prediction

王祥、姜楚、蒋煌斌

展开 >

湖南省水利水电科学研究院,湖南 长沙 410007

湖南省大坝安全与病害防治工程技术研究中心,湖南 长沙 410007

小型水库 PS-InSAR M-LSTM 变形预测

湖南省自然科学青年基金项目湖南省大坝安全与病害防治工程研究中心项目

2024JJ6282Hndam2023kf05

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(10)
  • 7