水电能源科学2024,Vol.42Issue(12) :24-27,45.DOI:10.20040/j.cnki.1000-7709.2024.20240235

永兴岛GPM-IMERG降水数据空间降尺度研究

Spatial Downscaling Study of Yongxing Island GPM-IMERG Data

苗聪聪 闫金凤
水电能源科学2024,Vol.42Issue(12) :24-27,45.DOI:10.20040/j.cnki.1000-7709.2024.20240235

永兴岛GPM-IMERG降水数据空间降尺度研究

Spatial Downscaling Study of Yongxing Island GPM-IMERG Data

苗聪聪 1闫金凤1
扫码查看

作者信息

  • 1. 山东科技大学测绘与空间信息学院,山东 青岛 266590
  • 折叠

摘要

高时空分辨率的降水栅格数据是多种水文模型和气候模型的重要输入数据.引入经度、纬度、温度、风速和比湿作为解释变量,基于多元线性回归、长短期记忆递归神经网络(LSTM)和随机森林(RF)模型对GPM-IMERG降水数据进行降尺度.以永兴岛三沙气象站的测量数据为真实值,选取偏差(Bias)、相关系数(R)、均方根误差(RMSE)以及平均绝对误差(MAE)对原始GPM-IMERG降水数据和降尺度数据进行精度验证.结果表明,在日尺度上,GPM-IMERG降水数据与气象站实测降水数据之间偏差为-0.004 mm,平均绝对误差为3.537 mm;通过GPM-IMERG降尺度得到永兴岛10 m空间分辨率降水数据;RF模型降尺度结果精度最高,相较于原始GPM-IMERG降水数据均方根误差和相关系数分别提高了46.9%、30.1%.本研究可以在气象站稀少的情况下,为岛礁获取高空间分辨率降水数据提供了一种新的思路.

Abstract

High spatiotemporal resolution precipitation grid data serve as crucial input for various hydrological and cli-mate models.This study introduced longitude,latitude,temperature,wind speed,and specific humidity as explanatory variables.The multiple linear regression,long short term memory neural network,and random forest models were used to downscale GPM-IMERG precipitation data.Using measured data from the Yongxing Island meteorological station as ground truth,accuracy verification was conducted on the original GPM-IMERG precipitation data and downscaled data u-sing metrics such as Bias,correlation coefficient,root mean square error,and mean absolute error.The results indicate that at the daily scale,the deviation between GPM-IMERG precipitation data and measured precipitation data at the mete-orological station is-0.004 mm,with a mean absolute error of 3.537 mm.The 10 m spatial resolution precipitation data in the Yongxing Island is obtained through GPM-IMERG downscaling.The RF model yields the highest accuracy in downscaled results,with a 46.9%improvement in root mean square error and a 30.1%increase in the correlation coeffi-cient compared to the original GPM-IMERG precipitation data.This study provides a new approach for obtaining high spatial resolution precipitation data for islands and reefs in situations with sparse meteorological stations.

关键词

GPM-IMERG/降尺度/机器学习/南海岛礁

Key words

GPM-IMERG/downscaling/machine learning/islands and reefs in south china sea

引用本文复制引用

出版年

2024
水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
段落导航相关论文