首页|基于SSA-VMD-WDCNN的水电机组故障诊断

基于SSA-VMD-WDCNN的水电机组故障诊断

扫码查看
为提高水电机组故障诊断的诊断精度和诊断速度,提出了一种自适应变分模态分解与第一层为宽卷积核的深度卷积神经网络相融合的水电机组故障诊断方法。首先利用麻雀搜索算法对VMD分解参数进行寻优,利用最优分解参数对水电机组振动信号进行VMD分解,实现振动信号的最优自适应分解,再对分解后IMF分量进行归一化处理,最后将处理后的分量输入到 WDCNN模型中进行训练和测试,得到故障诊断结果。以实测水电机组振动信号进行对比试验,结果表明所提方法具有最优的诊断精度及良好的训练速度和降噪效果,在实际的水电机组故障诊断中有一定的参考作用。
Fault Diagnosis of Hydropower Unit Based on SSA-VMD-WDCNN
In order to improve the diagnostic accuracy and diagnostic speed of hydropower unit fault diagnosis,this paper proposed an adaptive variational modal decomposition fused with a deep convolutional neural network with a wide convolutional kernel in the first layer for hydropower unit fault diagnosis.Firstly,the sparrow search algorithm was used to optimize the VMD decomposition parameters,and the optimal decomposition parameters were used to decompose the vibration signals of the hydropower unit,so as to achieve the optimal adaptive decomposition of the vibration signals.And then the decomposed IMF components were normalised.Finally,the processed components were inputted into the WDCNN model to be trained and tested,and the results were obtained for the diagnosis of the faults.Comparison experi-ments were carried out with the measured vibration signals of hydropower units.The results show that the proposed method has the optimal diagnostic accuracy as well as good training speed and noise reduction effect,and it has a certain reference role in the actual diagnosis of hydropower unit faults.

hydroelectric unitfault diagnosissparrow search algorithmadaptive variational modal decompositiondeep convolutional neural network

欧阳慧泉、杨峰、单定军、肖龙、周迪、李超顺

展开 >

国网江西省电力有限公司柘林水电厂,江西 九江 332000

华中科技大学土木与水利工程学院,湖北 武汉 430074

水电机组 故障诊断 麻雀搜索算法 自适应变分模态分解 深度卷积神经网络

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(12)