首页|基于连续小波分析与深度可分离卷积的水电机组工况识别

基于连续小波分析与深度可分离卷积的水电机组工况识别

扫码查看
为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法.该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息.随后,对时频信息进行了数据归一化、几何尺寸变换和格式转换等一系列处理,将其转换为数字图像形式.最后,构建了深度可分离卷积神经网络模型,依据数字图像信息对模型进行参数训练,该模型能够有效区分机组不同出力工况及过渡工况.根据我国西南地区某水电站的一台轴流转桨式水电机组的振动信号,采用所提方法实现了机组多种工况的识别,正确率达到98.06%.
Recognition for Operation States of Hydroelectric Generating Units Based on Continuous Wavelet Transform and Deep Separable Convolution
To determine the operation states of hydroelectric units quickly and accurately,a recognition method based on Continuous Wavelet Transform(CWT)and Deep Separable Convolution(DSC)was proposed.The acquisition of vi-bration signals under various operation conditions of units were analyze by CWT,and its multiscale time-frequency distri-bution information was obtained.In order to convert time-frequency information into digital image format,a series of processes including data normalization,geometric size transformation and format conversion were performed to process the time-frequency information.Finally,a Deep Separable Convolution Neural Network(DSCNN)model was established to train the model according to digital image information.Operation states under different power and transient conditions can be identified effectively.Based on the vibration signals collected from a Kaplan hydroelectric unit of a hydropower sta-tion located in Southwest China,the identification of various operating conditions of the unit has been achieved with an ac-curacy rate of 98.06%.

hydroelectric generating unitvibration signalscontinuous wavelet transformdeep separable convolu-tion

马建军、王彤、王浩宇、唐一中、郭鹏程、李昂

展开 >

国能大渡河检修安装有限公司,四川 成都 610041

西安理工大学水利水电学院,陕西 西安 710048

水电机组 振动信号 连续小波变换 深度可分离卷积

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(12)