首页|基于机器学习的中国光伏产业发展影响因素研究

基于机器学习的中国光伏产业发展影响因素研究

扫码查看
为了解我国光伏产业发展存在空间分布差异的原因,提升非线性复杂系统的模型拟合能力,在明确多元线性回归分析指标对光伏产业的影响作用的基础上,构建经过元启发式算法优化的随机森林、自适应增强、梯度提升决策树、极端梯度提升树4种机器学习方法识别关键影响因素.结果表明,太阳能资源、核能发电量、专利授权量、人均电力消费量、建设用地面积、硅储量是影响光伏产业发展的重要因素;风力发电和光伏发电显著正相关,风力发电量与光伏企业聚集显著负相关;集中式光伏电站的开发更注重因地制宜,而分布式光伏电站的普及主要受电力系统绿色转型政策的影响.研究结果可为政府制定光伏产业发展政策提供参考.
Influencing Factors Analysis of China's Photovoltaic Industry Development Based on Machine Learning Method
To reveal the spatial distribution disparities in China's photovoltaic(PV)industry development and to im-prove model fitting capacity of nonlinear complex system,on the basis of clarifying the influence of multiple linear regres-sion analysis indicators on the photovoltaic industry,the RF,Adaboost,GBDT,and XGBoost algorithms optimized by metaheuristic algorithm were utilized to identify the crucial influencing factors.The results show that solar energy re-sources,nuclear power generation,number of patents granted,per capita electricity consumption,land area for construc-tion,and silicon reserves are the pivotal factors influencing PV industry development.Wind power generation shows a significant positive correlation with PV power generation,yet wind power generation is significantly negatively correlated with the clustering of photovoltaic enterprises.The development of centralized PV power stations emphasizes adaptability to local conditions,while the proliferation of distributed PV stations is chiefly influenced by green transformation policies within the power system.The research results offer reference for the government in formulating policies to drive the de-velopment of the PV industry.

photovoltaic industrydistribution differenceinfluencing factormachine learningmetaheuristic algo-rithms

陈军飞、杨亚宁、邓梦华

展开 >

河海大学商学院,江苏 南京 211100

长江保护与绿色发展研究院,江苏 南京 210098

江苏长江保护与高质量发展研究基地,江苏 南京 210098

光伏产业 分布差异 影响因素 机器学习 元启发式算法

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(12)