首页|基于改进鲸鱼优化算法的风电功率预测

基于改进鲸鱼优化算法的风电功率预测

扫码查看
准确的风电预测是保证风电并网稳定运行的基础,为了提高风电预测的精度,提出了一种新的预测模型.首先采用混沌策略初始化种群,并且利用哈里斯鹰策略与自适应权重策略对鲸鱼优化算法进行改进,然后用改进的鲸鱼优化算法对长短期记忆神经网络的神经元数目和学习率进行优化,最后用该模型进行风电功率预测.该模型相较于其他对比模型具有较高的预测性能,并且具有更好的泛化能力与稳定性.
Wind power prediction based on improved whale optimization algorithm
Accurate wind power prediction is the basis to ensure the stable operation of wind power grid connection.In order to improve the accuracy of wind power prediction,this paper proposes a new prediction model,firstly,the chaos strategy is used to initialize the population,and the whale optimization algorithm(WOA)is optimized using the Harris Hawk strategy(HHO)with the adaptive weight strategy,and then the improved whale optimization algorithm(HHO-CAWOA)is used to optimize the long and short term memory neural network(LSTM)with the improved whale optimization algorithm(HHO-CAWOA)to optimize the number of neurons and the learning rate,and finally the model is used for wind power prediction.The model has higher prediction performance and better generalization ability and stability than other comparative models.

long and short term memory neural networkwhale optimization algorithmHarris Hawk algorithmwind power prediction

库杨杨、王佐勋、刘健

展开 >

齐鲁工业大学(山东省科学院)信息与自动化学院,山东 济南 250353

长短期记忆神经网络 鲸鱼优化算法 哈里斯鹰算法 风电功率预测

山东省自然科学基金青年项目

ZR2022QF066

2024

齐鲁工业大学学报
山东轻工业学院

齐鲁工业大学学报

影响因子:0.369
ISSN:1004-4280
年,卷(期):2024.38(5)