首页|基于图神经网络的人体行为识别算法研究综述

基于图神经网络的人体行为识别算法研究综述

扫码查看
随着行为识别技术在危险监控、人机交互等领域的广泛应用,基于视频数据的人体行为识别研究已逐渐成为计算机视觉研究领域的一个新热点.由于图神经网络的方法不断完善,所以近年以图神经网络为主的深度学习方法逐渐被应用到人体骨骼数据中,用以提高人体行为识别算法的效率.介绍了基于图神经网络进行人体行为识别的相关方法,并对其进行分析和综述.首先介绍了基于图卷积网络的人体行为识别算法的发展现状;随后介绍了行为识别中常用到的数据集及各自的特点;最后对未来的研究方向和趋势进行了讨论.
A review of human action recognition algorithms based on graph neural networks
With the wide application of action recognition technology in the fields of risk monitoring and human-computer interaction,human action recognition based on video data has gradually become a new hotspot in the field of computer vision research.Due to the continuous improvement of graph neural network methods,deep learning methods based on graph neural network have been gradually applied to human bone data in recent years to improve the efficiency of human action recognition algorithms.Therefore,this paper introduces the related methods of human action recognition based on graph neural network,analyzes and summarizes them.Firstly,the development status of human action recognition algorithm based on graph convolutional network is introduced.Then the data sets commonly used in action recognition and their characteristics are proposed.Finally,the future research direction and trend are discussed.

action recognitiongraph neural networkskeletal datagraph convolutional networkgraph topology

杜一斐、张明亮、李彬

展开 >

齐鲁工业大学(山东省科学院)数学与统计学院,山东 济南 250353

行为识别 图神经网络 骨骼数据 图卷积网络 图拓扑

济南市"新高校20条"项目山东省高等学校青创科技支持计划

2021GXRC002019KINO11

2024

齐鲁工业大学学报
山东轻工业学院

齐鲁工业大学学报

影响因子:0.369
ISSN:1004-4280
年,卷(期):2024.38(5)