首页|机器人路径规划算法研究分析与综述

机器人路径规划算法研究分析与综述

扫码查看
在自动化和人工智能迅速发展的当下,移动机器人已广泛渗透至各行各业,而路径规划技术是确保其自主性和效率的关键.深度剖析了几类主流的路径规划算法,包括图搜索、随机采样、智能仿生以及深度强化学习,揭示了各算法在实际应用中的优势与挑战.进一步将路径规划研究按照应用场景分类,具体分析了陆地机器人、无人机、水下机器人在各自领域中的路径规划方法与发展趋势.此外,还展望了未来路径规划技术可能的发展方向.通过这一概述,旨在为该领域的研究人员提供宝贵的信息与研究思路.
Analysis andreview of robot path planning algorithms
With the rapid development of automation and artificial intelligence,mobile robots have been widely penetrated into all walks of life,and path planning technology is the key to ensuring their autonomy and efficiency.This paper deeply analyzes several mainstream path planning algorithms,including graph search,random sampling,intelligent bionics,and deep reinforcement learning,and reveals the advantages and challenges of each algorithm in practical applications.This paper further classifies the path planning research according to the application scenarios and specifically analyzes the path planning methods and development trends of land robots,unmanned aerial vehicles,and underwater robots in their respective fields.In addition,this paper also looks forward to the possible future development directions of path planning techniques.Through this overview,this paper aims to provide valuable information and research ideas for researchers in this field.

mobile robotpath planning algorithmalgorithm classificationbionic algorithmdeep reinforcement learning

杨姝慧、郝子鑫、李彬

展开 >

齐鲁工业大学(山东省科学院)数学与统计学院,山东 济南 250353

移动机器人 路径规划算法 算法分类 仿生算法 深度强化学习

济南市"新高校20条"项目山东省高等学校青创科技支持计划

2021GXRC002019KINO11

2024

齐鲁工业大学学报
山东轻工业学院

齐鲁工业大学学报

影响因子:0.369
ISSN:1004-4280
年,卷(期):2024.38(5)