首页|基于自适应K近邻和深度学习的D2D资源分配算法

基于自适应K近邻和深度学习的D2D资源分配算法

扫码查看
针对小区边缘用户(cell-edge user,CEU)在高密度场景中存在通信服务质量较差的问题,通过引入D2D中继技术,提出基于自适应K近邻和深度学习的资源分配算法,使得CEU的和速率最大.该算法首先基于自适应K近邻算法对CEU的通信模式进行选择,结合受干扰条件提出了一种缓存内容交付方案;然后采用深度神经网络构建资源分配型神经网络进行训练和测试,其中将网络输入重构为信道增益矩阵,发射功率与网络输出进行映射以实现资源分配;最后,仿真结果表明,在保证CEU服务质量的前提下,所提出的算法相比于随机算法和Q学习算法使下行总和速率分别平均提升了 13.6%和 7.3%,有效提高了CEU的通信质量,实现了更高的数据速率.
Resource allocation algorithm based on adaptive K nearest neighbor and deep learning in D2D communication
Aiming at the problem of poor communication service quality of Cell-Edge User(CEU)in high-density scenarios,a resource allocation algorithm based on adaptive K-nearest-neighbor and deep learning is proposed to maximize the sum rate of CEU by introducing D2D relaying technology.The algorithm first selects the communication mode of CEU based on adaptive K nearest neighbor algorithm,and proposes a cached content delivery scheme by combining the interference conditions.Then a deep neural network is used to construct a complex resource allocation neural network model for training and testing,in which the network inputs are reconstructed as channel gain matrices,and the transmit power is mapped to the network outputs for resource allocation.Finally,the simulation results show that the proposed algorithm improves the downlink sum rate by an average of 13.6%and 7.3%compared with the random algorithm and Q-learning algorithm,respectively,which effectively improves the communication quality of CEU and realizes higher data rates,under the premise of guaranteeing the quality of service of CEU.

D2D communicationKNN algorithmdeep learningcacheresource allocation

龙源、何小利、叶杨、张博

展开 >

四川轻化工大学 计算机科学与工程学院,四川 自贡 643000

四川农业大学 资源学院,四川 雅安 625014

D2D通信 KNN算法 深度学习 缓存 资源分配

2024

齐鲁工业大学学报
山东轻工业学院

齐鲁工业大学学报

影响因子:0.369
ISSN:1004-4280
年,卷(期):2024.38(6)