首页|基于CTSA-Net的急性肾损伤风险预测研究

基于CTSA-Net的急性肾损伤风险预测研究

扫码查看
针对过去对急性肾损伤(acute kidney injury,AKI)患者的识别存在临床时间序列数据未被充分利用、提前预测窗口较短及缺少连续预测研究等不足,本研究提出了一种卷积神经网络和两阶段交叉注意力的混合网络模型(CTSA-Net),实现对 1 期及以上AKI的每小时连续预测.CTSA-Net的注意力支路、CNN支路及特征融合模块可增强对时间序列数据的全局表示以及局部细节的感知能力,从而提高对AKI的连续预测性能.在AKI发生时、发生前24、48及72h四个预测时间点,模型预测AKI的受试者工作特征曲线下面积分别为0.946、0.907、0.895 和 0.879,准确率-召回率曲线下面积分别为 0.979、0.960、0.949 和 0.939.实验结果表明,CTSA-Net模型在多个预测时间点进行AKI预测的性能较好,可用于患者的实时监测,辅助医生进行临床决策.
Research on risk prediction of acute kidney injury based on CTSA-Net
Addressing limitations in prior research of acute kidney injury(AKI),including underutilization of clinical time series data,short predictive windows,and a lack of continuous prediction studies,we proposed a hybrid network model called CTSA-Net,in-tegrated convolutional neural networks(CNN)and a two-stage cross-attention mechanism.CTSA-Net's attention pathway,CNN path-way,and feature fusion module enhanced global representation of time series data and perception of local details,thereby improved the continuous prediction performance for AKI.At four different prediction time points at AKI onset,24,48,and 72 h before AKI onset,the model achieved respective area under the receiver operated characteristic curve(AUC)values of 0.946,0.907,0.895,and 0.879,respectively.The area under the precision-recall curve(PR-AUC)values were 0.979,0.960,0.949,and 0.939,respectively.Exper-imental results indicate that the CTSA-Net model demonstrates robust performance in predicting AKI at multiple time points,making it suitable for real-time patient monitoring and assisting clinicians in making informed clinical decisions.

Acute kidney injuryDeep learning,Electronic health recordsAttentionConvolutional neural network

张青松、陈春晓、陈利海

展开 >

南京航空航天大学 生物医学工程系,南京 211106

南京市第一医院麻醉科,南京 210006

急性肾损伤 深度学习 电子健康记录 注意力 卷积神经网络

2024

生物医学工程研究
山东生物医学工程学会 山东省医疗器械研究所 山东省千佛山医院

生物医学工程研究

CSTPCD
影响因子:0.512
ISSN:1672-6278
年,卷(期):2024.43(1)
  • 27