首页|融合自注意力的乳腺钼靶图像特征引导分割算法

融合自注意力的乳腺钼靶图像特征引导分割算法

扫码查看
为提高对乳腺癌钼靶图像中病灶区域的识别精度,本研究设计了一种面向乳腺肿块和钙化区域分割的特征引导注意网络.首先,该网络通过特征提取模块学习乳腺组织的语义特征;其次,利用融合自校正注意力的解码模块,增强对病灶区域边缘信息的关注度,提高边界的清晰度;最后,采用特征引导注意模块增强通道的依赖关系,进一步还原病灶区域边缘细节,提高分割精度.实验结果表明,本研究网络在扩充后的INBreast1 数据库中肿块和钙化分割的平均骰子系数(mDice)分别达到了 0.971 和 0.888,在DDSM数据库肿块分割的mDice达到了 0.911,优于其他常规的分割模型,对乳腺癌的早期诊断和治疗具有重要意义.
Feature guided segmentation algorithm of mammograms fusion with self attention
In order to enhance the recognition accuracy of breast cancer mammography,we designed a feature guided attention net-work for the segmentation of breast mass and calcification areas.Firstly,the feature extraction module was designed to learn semantic features of breast tissue.Then,the decoding module integrating self correcting attention was used to enhance attention to the edge infor-mation of the lesion area,and improve the clarity of the boundary.Finally,feature guided attention module was used to enhance chan-nel dependencies,further restore edge details of the lesion area,and improve segmentation accuracy.The experimental results showed that the average Dice coefficient(mDice)of mass and calcification segmentation on the expanded INBreast1 reached 0.971 and 0.888 respectively,the mDice of mass segmentation on DDSM reached 0.911,which was better than that of other conventional segmentation models.The research is of great significance for early diagnosis and treatment of breast cancer.

Breast cancerMammogramsImage segmentationSelf attentionFeature guided

申文静、丛金玉、班楷第、王苹苹、刘坤孟、司兴勇、魏本征

展开 >

山东中医药大学 医学人工智能研究中心,青岛 266112

山东中医药大学 青岛中医药科学院,青岛 266112

乳腺癌 钼靶图像 图像分割 自注意力 特征引导

山东省自然科学基金资助项目山东省自然科学基金资助项目山东省自然科学基金资助项目

ZR2020QF043ZR2022QG051ZR2023QF094

2024

生物医学工程研究
山东生物医学工程学会 山东省医疗器械研究所 山东省千佛山医院

生物医学工程研究

CSTPCD
影响因子:0.512
ISSN:1672-6278
年,卷(期):2024.43(1)
  • 21