首页|基于语义分割的单导心电图心拍分类研究

基于语义分割的单导心电图心拍分类研究

扫码查看
为从心电图(electrocardiogram,ECG)中准确识别心拍,本研究提出了一种融合残差连接与注意力机制的改进一维U-Net语义分割模型,使用从上万名患者远程动态ECG记录中截取的 148 340 条单导联ECG数据,对正常窦性心律(Nor-mal)、室性早搏(premature ventricular contraction,PVC)、房性早搏(atrial premature beat,APB)、左束支传导阻滞(left bundle branch block,LBBB)和右束支传导阻滞(right bundle branch block,RBBB)五种常见心拍进行分类.该模型以一定长度的ECG片段作为输入,通过添加背景标签,完成对所有采样点的语义分割,实现对各心拍进行定位的同时,完成类型识别.在测试集上的实验结果表明,该模型能够准确检测心拍位置,仅有 0.04%的心拍被漏检;对Normal、PVC、APB、LBBB、RBBB心拍分类的F1分数分别为 99.44%、99.03%、97.63%、95.25%和 94.77%.该方法与传统U-Net模型相比,能够取得更好的心拍分类效果.
Research on single-lead ECG beat classification based on semantic segmentation
In order to accurately identify the beats from ECG signals,we proposed an improved 1D U-Net semantic segmentation model fusing residual connection and attention mechanism.148 340 single-lead ECG datas intercepted from remote dynamic ECG re-cords of tens of thousands of patients were used to classify five common beat types:normal sinus beats(Normal),premature ventricu-lar contractions(PVC),atrial premature beat(APB),left bundle branch block(LBBB)and right bundle branch block(RBBB).The model took a certain length of ECG segments as input,and completed semantic segmentation of all sampling points by adding back-ground labels,meanwhile completed type recognition while positioned each beat.The experimental results on the test set showed that the model could accurately detect the position of each beat,and only 0.04%of beats were missed,and the F1 scores of Normal,PVC,APB,LBBB and RBBB were 99.44%,99.03%,97.63%,95.25%and 94.77%,respectively.Compared with the traditional U-Net model,the proposed model achieves better results of beat classification.

ECG beat classificationU-NetSemantic segmentationResidual connectionAttention mechanism

王豪、廖云朋、彭宽、黄忠朝

展开 >

中南大学 基础医学院,长沙 410013

深圳市瑞康宏业科技开发有限公司,深圳 518000

心拍分类 U-Net 语义分割 残差连接 注意力机制

2024

生物医学工程研究
山东生物医学工程学会 山东省医疗器械研究所 山东省千佛山医院

生物医学工程研究

CSTPCD
影响因子:0.512
ISSN:1672-6278
年,卷(期):2024.43(3)
  • 4