首页|基于Goddard评分法的肺气肿自监督分级算法研究

基于Goddard评分法的肺气肿自监督分级算法研究

扫码查看
针对肺气肿智能化诊断高度依赖高质量标注数据、图像空间信息复杂及特征提取不足等问题,本研究基于Goddard评分法设计了一种肺气肿分级算法.首先,利用SimSiam框架进行自监督学习,以解决对大量高质量标注数据的依赖;其次,引入连续 3D卷积模块和高效多尺度注意模块(efficient multi-scale attention,EMA),通过整合上肺野、中肺野及下肺野的信息捕捉肺部图像中的关键空间信息,以提升模型在处理复杂肺部CT图像时的特征提取能力和识别精度.实验结果显示,在识别肺气肿存在、轻度肺气肿与无肺气肿、肺气肿严重程度的分级任务中,模型准确率分别为 88.79%、83.44%、57.4%.结果表明,本算法在肺气肿识别和分类任务中表现良好,具有一定的临床意义.
Study on self-supervised emphysema grading algorithm based on goddard scoring method
Aiming at the intelligent diagnosis of emphysema highly depending on high-quality annotation data,complex image spa-tial information and insufficient feature extraction,we designed an emphysema classification algorithm based on Goddard scoring meth-od.Firstly,the algorithm utilized the SimSiam framework for self-supervised learning to address the dependency on a large volume of high-quality annotated data.Then,the continuous 3D convolution module and the efficient multi-scale attention(EMA)module were introduced,to capture the key spatial information of lung images by integrating the information of upper,middle and lower lung lobes,to improve the feature extraction ability and recognition accuracy of the model were processing complex lung CT images.The experimen-tal results showed that in the grading task of the emphysema presence,mild and no emphysema,and the severity of emphysema,the accuracy of the model was 88.79%,83.44%,and 57.4%,respectively.The result indicates that this algorithm performs well in the em-physema recognition and classification,and has certain clinical significance.

Chronic obstructive pulmonary diseaseEmphysemaCT imagingSelf-supervised learningEMA3D convolution

韩云龙、王苹苹、卢绪香、杨毅、丁鹏、魏本征

展开 >

山东中医药大学 青岛中医药科学院,青岛 266112

山东中医药大学 医学人工智能研究中心,青岛 266112

山东中医药大学附属医院,济南 250011

山东中医药大学第二附属医院,济南 250001

展开 >

慢性阻塞性肺疾病 肺气肿 CT影像 自监督学习 EMA 3D卷积

山东省自然科学基金资助项目山东省自然科学基金资助项目山东省自然科学基金资助项目青岛市科技惠民示范专项项目山东省中医药科技项目

ZR2020KF013ZR2019ZD04ZR2023QF09423-2-8-smjk-2-nshQ-2023070

2024

生物医学工程研究
山东生物医学工程学会 山东省医疗器械研究所 山东省千佛山医院

生物医学工程研究

CSTPCD
影响因子:0.512
ISSN:1672-6278
年,卷(期):2024.43(3)
  • 2