首页|基于尺度递归分析的恶性室性心律失常检测

基于尺度递归分析的恶性室性心律失常检测

扫码查看
为及时准确地检测恶性室性心律失常,本研究提出了一种结合心电多尺度分析与递归量化分析(recurrence quantifi-cation analysis,RQA)的方法.首先,通过固定频率经验小波变换滤波器组将心电信号(electrocardiogram,ECG)分解为两个子信号(0.5~10 Hz、10~30 Hz),并分别映射为递归图;然后基于 0.5~10 Hz频段子信号与原信号构建交叉递归图,从三张递归图中提取RQA特征;最后将特征输入XGBoost分类器进行特征排序与筛选,实现ECG的准确分类.本研究使用MIT-BIT恶性室性心律失常数据库和Creighton大学室性快速性心律失常数据库进行实验.在 10 折交叉验证下,该方法对 5s心电的恶性室性心律失常检测的灵敏度、特异性、准确率分别为 97.40%、99.01%和 98.69%.本研究方法在检测恶性室性心律失常方面具有一定的可靠性.
Detection of malignant ventricular arrhythmias using multi-scale recurrence quantification analysis
In order to detect malignant ventricular arrhythmias(MVA)in a timely and accurated manner,we proposed a method that integrated multi-scale analysis of electrocardiogram(ECG)signals with recurrence quantification analysis(RQA).Firstly,the method leveraged fixed-frequency range empirical wavelet transform filter banks to decompose ECG signals into two sub-signals(0.5~10 Hz,10~30 Hz).Then,these sub-signals were subsequently mapped into recurrence plot(RP).Moreover,a cross recurrence plot(CRP)was constructed using the sub-signal in the 0.5~10 Hz frequency band with the pre-processed undecomposed ECG signals.Quantitative analysis features were extracted from the three RPs or CRP,and fed into the XGBoost classifier for feature ranking and fil-tering,and finally the selected features were used to classify the ECG signals.The MIT-BIH and the CU ventricular tachyarrhythmia database were used for the experiment.Under 10-fold cross validation,the sensitivity,specificity,and accuracy of the method for de-tecting malignant ventricular arrhythmias in 5 s ECG segments reached 97.40%,99.01%,and 98.69%,respectively.The results dem-onstrate the reliability of the proposed method in detecting malignant ventricular arrhythmias.

ElectrocardiogramMalignant ventricular arrhythmiasRecurrence plotRecurrence quantification analysisMulti-scale

韩欣涛、蔡志鹏、李建清、刘澄玉

展开 >

东南大学 仪器科学与工程学院,南京 210096

心电图 恶性室性心律失常 递归图 递归量化分析 多尺度

国家自然科学基金资助项目国家自然科学基金资助项目国家自然科学基金资助项目国家重点研发计划

6217112362211530112620712412023YFC3603600

2024

生物医学工程研究
山东生物医学工程学会 山东省医疗器械研究所 山东省千佛山医院

生物医学工程研究

CSTPCD
影响因子:0.512
ISSN:1672-6278
年,卷(期):2024.43(4)