首页|基于机器学习的银行客户流失分析

基于机器学习的银行客户流失分析

扫码查看
为了准确预测可能在今后两年内与某银行终止业务关系的客户,基于机器学习构建了客户流失分析预测模型,该模型在预测客户流失方面与传统逻辑回归模型相比具有显著优势.通过深度神经网络对银行客户流失进行预测,并使用准确率、召回率、精度和F-Measure等指标对预测结果进行全面评估.对于被预测为即将流失的客户,银行可以采取针对性的支持措施,解决客户不满意之处和遇到的问题进而留住客户.这一预测模型不仅有助于银行提前识别潜在的流失风险,还为银行提供了挽留客户的重要机会,有助于建立长期客户关系.
Bank Customer Churn Analysis Based on Machine Learning
In order to accurately predict which customers may terminate their business relationship with a certain bank in the next two years,we constructed a customer churn analysis and prediction model based on machine learning.Compared with traditional logistic regression models,this model has significant advantages in predicting customer churn.We use deep neural networks to predict bank customer churn and comprehensively evaluate the prediction results using indicators such as accuracy,recall,precision,and F-Measure.For customers who are predicted to churn,banks can take targeted support measures to address their dissatisfaction and problems,thereby increasing the likelihood of their continued retention.This predictive model not only helps banks identify potential churn risks in advance,but also provides important opportunities for banks to retain customers and help maintain long-term customer relationships.

machine learninglogistic regressionbank customer churn analysis

曹桂林、杨许亮、王若凡

展开 >

广州科技职业技术大学 信息工程学院,广东 广州 510080

东莞城市学院,广东 东莞 523000

忻州师范学院,山西 忻州 034000

机器学习 逻辑回归 银行客户流失分析

2024

山东商业职业技术学院学报
山东商业职业技术学院

山东商业职业技术学院学报

影响因子:0.319
ISSN:1671-4385
年,卷(期):2024.24(1)
  • 11