首页|基于误差修正的LSSVM烧结主抽入口压力预测研究

基于误差修正的LSSVM烧结主抽入口压力预测研究

扫码查看
为了提高烧结厂主抽入口压力预测的精度,应用最小二乘支持向量机进行预测,通过增加互补集合经验模态分解以及马尔科夫链方法对该预测模型改进.主抽入口压力时间序列在互补集合经验模态分解后得到不同分量,将这些分量作为模型输入量,分别应用LSSVM模型进行训练,从而得出初始的预测值,之后基于马尔科夫链理论建立误差状态转移矩阵,得出修正误差,并结合初始的预测值得到最后预测值.改进算法模型的预测精度要高于LSSVM算法,验证了该模型的有效性.
Research on Lssvm Sintering Main Suction Inlet Pressure Prediction Based on Error Correction
In order to improve the accuracy of predicting the inlet pressure of the sintering plant,the least squares support vector machine is applied for prediction.The prediction model is improved by adding complementary set empirical mode decomposition and Markov chain method.The main inlet pressure time series is decomposed into different components through complementary set empirical mode decomposition.These components are used as model inputs and trained using LSSVM models to obtain initial predicted values.Then,based on Markov chain theory,an error state transition matrix is established to obtain the corrected error,which is combined with the initial predicted values to obtain the final predicted value.The improved algorithm model has higher prediction accuracy than the LSSVM algorithm,which verifies the effectiveness of the model.

pressure predictionLSSVMCEEMDMarkoverror correction

汪向硕、姜爽、郭子文、赵征

展开 >

首钢集团有限公司矿业公司,河北 迁安 064400

华北电力大学控制与计算机工程学院,河北 保定 071000

压力预测 最小二乘支持向量机 互补集合经验模态分解 马尔科夫链 修正误差

2024

山东冶金
山东金属学会

山东冶金

影响因子:0.176
ISSN:1004-4620
年,卷(期):2024.46(6)