首页|基于聚类与Transformer算法的上软下硬地层盾构滚刀正常磨损预测

基于聚类与Transformer算法的上软下硬地层盾构滚刀正常磨损预测

扫码查看
盾构法是隧道施工的主流方法,广泛应用于软土地层与复合地层.盾构机在上软下硬地层中掘进时,准确预测滚刀的磨损以便及时更换滚刀是确保施工安全与效率的关键.基于机器学习中的无监督kmeans聚类算法、有监督Transformer算法以及遗传算法,提出了一种根据刀盘前方地层条件、滚刀布设以及施工参数预测滚刀正常磨损的方法.kmeans聚类算法用于实时分析当前盾构施工参数间的关系,从而划分不同施工状态,并为不同施工状态分配不同的磨损修正系数作为Transformer模型的输入参数.根据地层条件及施工参数相关关系确定磨损修正系数初始值的大小,借助遗传算法对磨损修正系数进行优化.Transformer算法中,以地层条件、施工参数、滚刀安装半径和切削距离以及kmeans聚类得到的磨损修正系数作为输入参数,以滚刀磨损量作为输出参数,并由遗传算法对模型的超参数进行优化.所使用的数据采集自某大直径泥水平衡盾构隧道,所穿越地层条件包含全断面软土、上软下硬地层以及全断面硬岩,样本集包含 217 条数据.聚类结果所揭示的施工状态与滚刀的磨损速度具有明显的对应关系,预测模型的滚刀磨损平均预测误差为 3.6mm,占滚刀换刀磨损量 40.0mm的 9%.
Normal Wear Prediction of Disc Tool Based on Clustering and Transformer Algorithm for Tunneling in Upper Soft and Lower Hard Strata
Shield tunneling is the main method for tunnel construction,widely used in soft strata and composite strata.How to accurately predict the tool wear when the shield machine is tunneling in the upper soft and lower hard strata is an important issue to ensure construction safety and efficiency.Based on the unsupervised clustering algorithm,supervised Transformer algorithm and genetic algorithm in machine learning,a method is proposed to predict tool wear based on the ground conditions,tool placement and construction parameters.The kmeans clustering algorithm is used to analyze the relationship between the shield construction parameters,so as to classify different construction states in order to assign different wear correction coefficients to different construction states.The initial values of wear correction coefficients are determined by the ground conditions and construction parameters.Genetic algorithm is used to optimized the values of wear correction coefficients.In Transformer algorithm,the ground conditions,construction parameters,tool cutting radius,and wear correction coefficients from kmeans clustering are used as input parameters,and tool wear is used as output parameter,and the hyperparameters of the model are optimized by the genetic algorithm.The data used are collected from a large-diameter slurry balance shield machine in Shenzhen,and the ground conditions contain full-section soft soil,upper soft and lower hard strata,and full-section hard rock.The dataset contains 217samples.The construction states revealed by the clustering results have clear correspondence with the tool wear,and the average prediction error of tool wear of the prediction model is 3.6mm,accounting for 9%of the max tool wear of 40.0mm.

tunnelsshieldstool wearclustering algorithmgenetic algorithmmachine learning

常佳奇、黄宏伟、张东明、李章林

展开 >

同济大学地下建筑与工程系,上海 200092

同济大学岩土及地下工程教育部重点实验室,上海 200092

上海隧道工程股份有限公司,上海 200032

隧道工程 盾构 刀具磨损 聚类算法 遗传算法 机器学习

上海市科委课题

20dz1202200

2024

施工技术(中英文)
亚太建设科技信息研究院 中国建筑设计研究院 中国建筑工程总公司 中国土木工程学会

施工技术(中英文)

影响因子:1.244
ISSN:2097-0897
年,卷(期):2024.53(1)
  • 12