首页|基于水气二相流固耦合土层注气变形规律研究

基于水气二相流固耦合土层注气变形规律研究

扫码查看
为应对地铁联络通道施工过程中所面临的透水事故风险,在调研气压沉箱法和气压新奥法的基础上提出了气压隔水施工工艺.基于Biot固结理论、van Genuchten模型、达西定律和连续性定理建立了应力场、渗流场和相场耦合理论模型,提出了一种van Genuchten模型参数和Biot固结系数反演方法,通过气压隔水可行性试验渗水量数据成功还原了试验粉土样相关参数.通过数值模拟研究了粉土层注气后的空气扩散面积和地表沉降量规律.研究表明:①空气扩散面积随注气压力的增加而线性增加,地表隆起量则在注气压力>1.7 倍静水压力后趋于平缓;②在粉土地层条件下,以一般地铁联络通道断面面积 16m2 为例,埋深由 10m增加至 50m,土层注气后的地表隆起量由 6mm线性增加至 42mm.
Gas Injection Deformation Law of Soil Layer Based on Water-gas Two-phase Fluid-solid Coupling
In order to deal with the risk of water inrush accident in the construction process of subway connecting passage,this paper puts forward the construction technology of air pressure water insulation based on the investigation of air pressure caisson method and air pressure NATM.Based on Biot consolidation theory,van Genuchten model,Darcy's law and continuity theorem,a theoretical model of stress field,seepage field and phase field coupling is established,a van Genuchten model parameter and Biot consolidation coefficient inversion method are established,the above parameters of the test silt sample are successfully restored by the seepage data of the air pressure water-proof feasibility test.The law of air diffusion surface and surface subsidence after gas injection in silt layer is studied by numerical simulation.The research shows that,the air diffusion area increases linearly with the increase of gas injection pressure,and the surface uplift tends to be gentle after the gas injection pressure exceeds 1.7 times of the hydrostatic pressure.Under the condition of silt layer,taking the cross-sectional area of 16m2as an example,the buried depth increases from 10m to 50m,and the surface uplift after gas injection increases linearly from 6mm to 42mm.

fluid-solid couplinginversionseepagetestsdeformationsimulation

郭小红、马健勇、刘彬、李珂、高文元

展开 >

中国建筑技术中心,北京 101300

青岛市住房和城乡建设局建管中心,山东 青岛 266071

流固耦合 反演 渗流 试验 变形 数值模拟

中建股份科技研发课题

CSCES-2020-Z-45

2024

施工技术(中英文)
亚太建设科技信息研究院 中国建筑设计研究院 中国建筑工程总公司 中国土木工程学会

施工技术(中英文)

影响因子:1.244
ISSN:2097-0897
年,卷(期):2024.53(2)
  • 9