首页|基于粒子群优化极限学习机的隧道地表沉降预测

基于粒子群优化极限学习机的隧道地表沉降预测

扫码查看
为了提高地表沉降预测的精度和速度,提出了一种改进的极限学习机模型用于预测地表沉降.引入粒子群算法优化极限学习机的权值和阈值,提高极限学习机的预测效果.以济南轨道交通 4 号线燕山立交桥站为例,进行模型实证分析,利用改进的极限学习机进行盾构隧道地表沉降预测,并与传统的极限学习机模型进行对比.经过粒子群算法改进的极限学习机模型MSE降低了 22%,RMSE降低了 28%,MAPE降低了 5.3%,验证了经粒子群算法改进后的极限学习机具有较好的预测精度和预测速度.对改进的极限学习机进行了泛化能力实证,验证了该模型具有较好的泛化能力.
Prediction of Tunnel Surface Settlement Based on Particle Swarm Optimization Extreme Learning Machine
An improved extreme learning machine model is proposed to predict surface subsidence to improve the accuracy and speed of surface subsidence prediction.The particle swarm optimization algorithm is introduced to optimize the weights and thresholds of the extreme learning machine to improve its prediction effect.Taking Yanshan Overpass Station of Jinan Rail Transit Line 4 as an example,an empirical analysis of the model was carried out.The improved extreme learning machine was used to predict the surface settlement of the shield tunnel,and was compared with the traditional extreme learning machine model.The MSE,RMSE and MAPE of the extreme learning machine model improved by the particle swarm optimization algorithm are reduced by 22%,28%,and 5.3%,respectively,which verify that the extreme learning machine improved by the particle swarm optimization algorithm has better prediction accuracy and prediction speed.Empirical evidence has verified that the improved extreme learning machine has a comparatively good generalization ability.

subways stationstunnelssettlementextreme learning machineparticle swarm optimizationprediction

汪敏

展开 >

中铁十八局集团第三工程有限公司,河北 涿州 072750

地铁车站 隧道 地表沉降 极限学习机 粒子群算法 预测

中国铁建股份有限公司 2022年度科技研究开发计划及资助课题中铁十八局集团有限公司 2022年度科研创新项目

2022-C1C2022-051

2024

施工技术(中英文)
亚太建设科技信息研究院 中国建筑设计研究院 中国建筑工程总公司 中国土木工程学会

施工技术(中英文)

影响因子:1.244
ISSN:2097-0897
年,卷(期):2024.53(7)
  • 1
  • 11