首页|基于深度学习的生活垃圾分类方法现状与展望

基于深度学习的生活垃圾分类方法现状与展望

扫码查看
随着计算机视觉应用的突破性发展以及垃圾分类智能化需求的日益增长,基于深度学习的垃圾分类技术成为生活垃圾分类的主流发展趋势.基于深度学习的垃圾分类典型方法主要包括基于ResNet、DenseNet、单阶段目标检测方法和卷积神经网络与迁移学习相结合方法等.文章系统梳理各分类方法的技术特色和适用效果,介绍了有限的垃圾分类公开数据集图像获取及数据情况,指出深度学习在垃圾分类应用中面临数据集依赖、多目标小物体检测率低、轻量型网络模型少等瓶颈问题.聚焦问题,提出了深度学习技术在生活垃圾分类中应用的重点研究领域,并对未来研究发展趋势予以展望.

黄乐程

展开 >

吉首大学通信与电子工程学院 湖南吉首 416000

深度学习 卷积神经网络 ResNet DenseNet 单阶段目标检测

2024

信息技术与信息化
山东电子学会

信息技术与信息化

影响因子:0.29
ISSN:1672-9528
年,卷(期):2024.(3)
  • 26