首页|基于无人机可见光影像的免耕种植夏玉米苗数估算

基于无人机可见光影像的免耕种植夏玉米苗数估算

扫码查看
为了快速估算免耕种植夏玉米出苗数,提高大田夏玉米种植管理的精准性,本研究利用无人机搭载可见光相机获取夏玉米田块高分辨率可见光影像,计算 8 种植被指数并结合最大类间方差法分割植被与非植被,经分析,选择红色植被指数(RI)二值化图像对可见光影像掩膜;然后统计夏玉米和杂草的 24 项纹理特征,比较杂草特征的变异系数及其与夏玉米的相对差异系数,选择红色方差提取夏玉米苗的特征,使用时序交点阈值法确定的阈值去除杂草干扰;提取夏玉米苗形态学特征参数作为样本,采用支持向量机(SVM)、BP神经网络、K近邻和决策树 4 种算法构建夏玉米苗数预测模型。结果表明,SVM和决策树算法的整体效果较好,决定系数均超过 0。8 且平均绝对误差(MAE)小于 0。3,尤以决策树模型的精度最高,可达 94。1%。本研究结果可为大面积夏玉米出苗率估测提供技术支持。
Estimation of No-Tillage Planting Summer Maize Seedling Number Based on UAV Visible Light Images
This study aimed to quickly estimate the emergence number of no-tillage planting summer maize and improve the field management accuracy.Using the high-resolution visible light images of summer maize fields obtained by UAV equipped with a visible light camera,8 vegetation indices were calculated and used to segment vegetation and non-vegetation combined with the maximum between-class variance method.After comparing the segment effect,the red vegetation index(RI)binary image was selected for the visible light image mask.Through counting of summer corn and weeds,comparing the variation coefficients of 24 tex-ture features of weeds and their relative difference coefficient with those of summer maize,the red variance was selected as the feature to extract summer maize seedlings,and the threshold determined by time series inter-section threshold method was used to remove weed.With the extracted morphological characteristic parameters of summer maize seedlings,four algorithms of support vector machine(SVM),BP neural network,K-nearest neighbor and decision tree were used to construct the prediction model of summer maize seedling number.The results showed that the overall effects of SVM and decision tree algorithm were better with determination coeffi-cient over 0.8 and mean absolute error less than 0.3,and the accuracy of decision tree model was the highest up to 94.1% .The results of this study could provide technical support for estimating the emergence rate of summer maize in large area.

Summer maizeEmergence rateUAVRemote sensingVisible light

苗建驰、崔文豪、杨蕾、李京谦、兰玉彬、赵静

展开 >

山东理工大学农业工程与食品科学学院/国际精准农业航空应用技术研究中心,山东 淄博 255000

夏玉米 出苗数 无人机(UAV) 遥感 可见光

山东省自然科学基金山东省引进顶尖人才"一事一议"专项

ZR2021MD091鲁政办字[2018]27号

2024

山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
年,卷(期):2024.56(3)
  • 18