首页|基于特征融合注意力机制的樱桃缺陷检测识别研究

基于特征融合注意力机制的樱桃缺陷检测识别研究

扫码查看
针对现有樱桃缺陷检测识别中存在的问题,为实现移动端智能化快速检测与精准识别,本研究提出了一种基于卷积神经网络对樱桃图像进行缺陷检测识别的轻量化模型,可为开发樱桃的移动端无损化智能检测系统奠定理论基础。首先,将采集到的完好樱桃、刺激生长樱桃、双胞胎樱桃和腐烂樱桃 4 类樱桃图像经预处理后按比例划分训练集、验证集和测试集。其次,基于迁移学习对比分析NASNet-Mobile、MobileNetV2、ResNet18、InceptionV3、VGG-16 网络模型后,选择各方面性能表现良好的MobileNetV2 为基线模型,通过微调构建I-MobileNetV2 模型;然后在I-MobileNetV2 基础上,嵌入坐标注意力(CA)模块,构建ICA-MobileNetV2模型,该模型平均准确率达到 97。09%,相比于基线模型(90。02%)提高 7。85%,比 I-MobileNetV2 模型(94。34%)提高 2。91%。可见,ICA-MobileNetV2 作为可部署移动端的轻量化模型,具有较高准确率和较少参数,适用于樱桃缺陷检测与多分类任务,为樱桃缺陷检测与品质分级研究提供了新思路。
Research on Cherry Defect Detection and Recognition Based on Feature Fusion Attention Mechanism
In view of the existing problems in cherry defect detection and recognition,and to realize in-telligent rapid detection and accurate recognition,a lightweight defect detection and recognition model based on convolutional neural network was proposed for cherry images,which could provide a theoretical basis for developing lossless intelligent detection system carried on mobile terminal.Firstly,the collected images of in-tact cherries,growth-stimulated cherries,twin cherries and rotten cherries were preprocessed,and then were divided into training,validation and test sets in proportion.Secondly,after comparing the network models such as NASNet-Mobile,MobileNetV2,ResNet18,InceptionV3 and VGG-16 based on transfer learning,the Mo-bileNetV2 with good performance in all aspects was selected as the baseline model,and then the I-Mobile-NetV2 model was established after fine tuning.On the basis of I-MobileNetV2,the coordinate attention was embedded,and then the ICA-MobileNetV2 model was constructed.The average accuracy of ICA-MobileNetV2 model reached 97.09% ,which was 7.85% higher than that of baseline model(90.02% )and 2.91% higher than that of I-MobileNetV2 model(94.34% ).As a deployable lightweight model,ICA-MobileNetV2 had high-er accuracy and fewer parameters,so it was suitable for cherry defect detection and multi-classification tasks,which provided a new idea for cherry defect detection and quality classification research.

CherryDefect detectionConvolutional neural networkCoordinate attention mechanism

代东南、马睿、刘起、孙孟研、马德新

展开 >

青岛农业大学动漫与传媒学院,山东 青岛 266109

青岛农业大学智慧农业研究院,山东 青岛 266109

樱桃 缺陷检测 卷积神经网络 坐标注意力机制

山东省自然科学基金山东省高等学校青创人才引育计划

ZR2022MC152202202027

2024

山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
年,卷(期):2024.56(3)
  • 24