山东农业科学2024,Vol.56Issue(5) :163-170.DOI:10.14083/j.issn.1001-4942.2024.05.021

基于计算机视觉的茶叶嫩芽识别方法研究进展

Research Progress of Tea Bud Recognition Based on Computer Vision

张昆 袁博涵 崔静莹 刘宇洋 毛敏 王鹏 曾庆轩
山东农业科学2024,Vol.56Issue(5) :163-170.DOI:10.14083/j.issn.1001-4942.2024.05.021

基于计算机视觉的茶叶嫩芽识别方法研究进展

Research Progress of Tea Bud Recognition Based on Computer Vision

张昆 1袁博涵 2崔静莹 2刘宇洋 2毛敏 2王鹏 2曾庆轩3
扫码查看

作者信息

  • 1. 信阳师范大学物理电子工程学院,河南 信阳 464000;信阳市浉河区农业农村局,河南 信阳 464000
  • 2. 信阳师范大学物理电子工程学院,河南 信阳 464000
  • 3. 信阳市浉河区农业农村局,河南 信阳 464000
  • 折叠

摘要

一直以来茶叶嫩芽的采摘都依赖于手工,机械化采摘依旧是难题.近些年计算机视觉技术飞速发展,为智能化采摘茶叶嫩芽提供了技术前提,受到科研人员的广泛关注,已率先在茶叶嫩芽识别领域展开了相关研究.本文从茶叶嫩芽检测识别、品质等级分类识别两方面来综述当前茶叶嫩芽识别的研究进展,介绍了分别基于传统图像处理法、机器学习算法和基于深度学习算法的茶叶嫩芽检测识别方法,比较分析了每种方法的优缺点,着重介绍了深度学习算法在茶叶嫩芽品质等级分类中的应用研究进展,同时总结了当前茶叶嫩芽研究领域的热点及存在的诸多难点,并对今后茶叶嫩芽识别研究的方向进行了展望,以期为茶叶嫩芽智能化采摘提供相应的技术支持.

Abstract

Tea bud picking has been relying on hand picking,its mechanization is still a difficult prob-lem.In recent years,with the rapid development,computer vision technology provides the prerequisite for in-telligent tea bud picking,which has been widely concerned by researchers,and has taken the lead in the field of tea bud recognition.In this paper,the research progress of tea bud recognition was summarized from two as-pects of tea bud detection and recognition and tea bud quality classification and recognition;the tea bud detec-tion and recognition methods based on traditional image processing,machine learning algorithm and deep learning algorithm were introduced,and the advantages and disadvantages of each method were compared,a-mong which,the application of deep learning algorithm in tea bud quality classification was focused on;the hot spots and difficulties in current tea bud research field were summarized,and the future research direction on tea bud recognition was prospected in order to provide technical support for intelligent tea bud picking.

关键词

计算机视觉/芽叶嫩芽识别/品质等级分类/智能化采茶

Key words

Computer vision/Tea bud recognition/Quality grade classification/Intelligent tea picking

引用本文复制引用

基金项目

河南省教育厅重点科研项目(23A510014)

河南省教育厅重点科研项目(22A510009)

河南省科技攻关计划(222102210320)

信阳师范学院青年骨干教师资助项目(2022GGJS-04)

出版年

2024
山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
参考文献量69
段落导航相关论文