山东农业科学2024,Vol.56Issue(10) :159-166.DOI:10.14083/j.issn.1001-4942.2024.10.022

基于改进MobileViT的葡萄叶部病害识别模型

Grape Leaf Disease Recognition Model Based on Improved MobileViT

胡施威 邱林 邓建新
山东农业科学2024,Vol.56Issue(10) :159-166.DOI:10.14083/j.issn.1001-4942.2024.10.022

基于改进MobileViT的葡萄叶部病害识别模型

Grape Leaf Disease Recognition Model Based on Improved MobileViT

胡施威 1邱林 1邓建新2
扫码查看

作者信息

  • 1. 长江大学计算机科学学院,湖北 荆州 434023
  • 2. 长江大学农学院,湖北 荆州 434025
  • 折叠

摘要

本研究提出了一种优化的葡萄叶部病害识别模型CD-MobileViT.首先,将MobileViT作为基础网络,在Layer1、Layer2 后面均嵌入坐标注意力模块CA(Coordinate Attention),以使网络能更有效地捕捉不同位置的关键特征;其次,在网络全连接层之后添加Dropout层,防止数据出现过拟合现象;最后,选用结合权重衰减的优化器AdamW(Adam with Weight Decay Regularization),更好地控制模型复杂度并提高泛化能力.实验结果显示,相较于MobileViT基础网络,改进后的CD-MobileViT网络在精确率、召回率、F1 得分和准确率方面分别提高了 1.77、1.85、1.65、1.75 个百分点,与其他几种经典网络模型(InceptionV1、MobileNetV2、Efficient-NetB0、VGG-16)相比也有不同程度的提升(0.25~1.47 个百分点),说明本研究提出的模型在葡萄叶部病害识别上有良好的效果,未来可部署到移动端使用,为葡萄叶部病害的准确识别提供新的解决方案.

Abstract

This study put forward an optimized grape leaf disease recognition model,CD-MobileViT.Firstly,the MobileViT was used as the base network,and the coordinate attention(CA)modules were embed-ded after Layer1 and Layer2 to enable the network to more effectively capture key features from different posi-tions.Secondly,a Dropout layer was added after the network's fully connected layer to prevent overfitting.Lastly,the optimizer AdamW(Adam with Weight Decay Regularization)was used to better control model complexity and improve generalization ability.The experimental results showed that compared to the base Mo-bileViT network,the improved network CD-MobileViT improved precision,recall,F1 score and accuracy by 1.77,1.85,1.65 and 1.75 percentage points,respectively.Additionally,it also showed varying degrees of im-provement(0.25~1.47 percentage points)compared to other classic networks(InceptionV1,MobileNetV2,EfficientNetB0,VGG-16).These results indicated that the improved model had good effect on grape leaf dis-ease recognition and could be deployed on mobile devices in the future,which provided a new solution for the accurate recognition of grape leaf diseases.

关键词

葡萄叶部病害识别/MobileViT网络/坐标注意力/AdamW优化器/Dropout层

Key words

Recognition of grape leaf diseases/MobileViT network/Coordinate attention/AdamW opti-mizer/Droupout layer

引用本文复制引用

基金项目

国家自然科学基金面上项目(32270022)

出版年

2024
山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
段落导航相关论文