山东农业科学2024,Vol.56Issue(11) :170-180.DOI:10.14083/j.issn.1001-4942.2024.11.023

基于卷积神经网络的农作物病虫害检测研究进展

Research Progress of Crop Disease and Pest Detection Based on Convolutional Neural Network

蔡国庆 吴建军 祝玉华 甄彤 李智慧 连一萌
山东农业科学2024,Vol.56Issue(11) :170-180.DOI:10.14083/j.issn.1001-4942.2024.11.023

基于卷积神经网络的农作物病虫害检测研究进展

Research Progress of Crop Disease and Pest Detection Based on Convolutional Neural Network

蔡国庆 1吴建军 1祝玉华 1甄彤 1李智慧 1连一萌1
扫码查看

作者信息

  • 1. 河南工业大学信息科学与工程学院,河南郑州 450001
  • 折叠

摘要

农作物病虫害是全球农业生产的严重威胁之一,易造成巨大的经济损失.引入机器视觉和机器学习方法进行农作物病虫害检测,不仅可以提高病虫害检测的效率,而且有助于及时采取防治措施,降低损失.卷积神经网络(CNN)作为深度学习的代表技术之一,在计算机视觉领域的图像识别、物体识别等方面应用广泛,在农作物病虫害检测方面也取得了一些成果.本文概述了基于CNN检测农作物病虫害的技术要点、发展历程,综述了该技术的主要研究方向与进展,总结了目前研究中存在的主要问题并提出相应的解决策略,旨在为CNN在农业上的应用提供理论依据,并为农业生产管理的智能化提供技术支撑.

Abstract

Crop pests and diseases pose a significant threat to global agricultural production,often lead-ing to substantial economic losses.The application of machine vision and machine learning methods for crop pest and disease monitoring not only enhances detection efficiency,but also facilitates timely preventive meas-ures to reduce losses.Convolutional neural network(CNN),as a prominent deep learning technique,has been widely used in computer vision for image and object recognition,and also has achieved promising a-chieves in crop disease and pest detection.This paper outlined the key aspects and development history of CNN-based techniques for crop disease and pest detection,reviewed the major research directions and ad-vancements in this area,summarized the main issues in current research,and proposed corresponding solu-tions.The aim of this paper was to provide a theoretical basis for CNN application in agriculture and to offer technical supports for the intelligent management of agricultural production.

关键词

农作物病虫害检测/卷积神经网络/深度学习/计算机视觉

Key words

Crop disease and pest detection/Convolutional neural network/Deep learning/Computer vision

引用本文复制引用

出版年

2024
山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
段落导航相关论文