首页|基于MobileNetV2和卷积注意力机制的轻量化玉米籽粒品种识别研究

基于MobileNetV2和卷积注意力机制的轻量化玉米籽粒品种识别研究

扫码查看
快速、准确地识别农作物品种对我国粮食安全和农业发展具有重要意义。为实现玉米种子的快速鉴别与保护,本研究提出一种基于MobileNetV2 和卷积注意力机制的玉米籽粒品种识别算法。首先购得市面上 9 个常规玉米品种的籽粒,使用佳能 80D型相机对其胚面和胚乳面进行图像采集,构建了包含 3 408 张图像的玉米籽粒识别数据集,按照 7∶2∶1划分训练集、验证集和测试集,并对训练集图像进行数据增强处理;然后设计注意力模块ISPAM(Improved Spatial Attention Module),即在卷积注意力模块(CBAM)基础上,提出一种新的通道注意力模块ICAM对CBAM的通道注意力机制进行改进,同时引入空间金字塔池化(SPP)模块替换CBAM空间注意力模块中的平均池化模块和最大池化模块,构建了玉米籽粒品种识别模型MobileNetV2_ISPAM。将MobileNetV2_ISPAM与添加其他注意力模块的模型对比,结果表明,MobileNetV2_ISPAM在测试集上的准确率为 99。11%,均明显高于MobileNetV2 以及添加SE(Squeeze-and-Excitation)、CBAM注意力机制的模型。梯度加权类激活映射网络可视化表明,MobileNetV2_ISPAM更关注玉米籽粒图像中的显著特征,从而提高了模型的准确率。此外,该模型的参数量仅为 7。15 M,适合移动端的便携化部署。本研究在保证模型轻量高效的前提下,提升其抵抗过拟合能力和分类性能,为以后基于深度学习的移动端玉米籽粒图像识别模型研究提供了思路。
Lightweight Maize Seed Variety Recognition Model Based on MobileNetV2 and Convolution Attention Mechanism
Rapid and accurate identification of crop variety is of great significance to food security and development of agriculture in China.In order to achieve fast identification and protection of maize seeds,this study proposed a maize seed variety recognition algorithm based on MobileNetV2 and convolution attention mechanism.Firstly,the seeds of nine popular maize varieties were bought from the market,and their images were captured using a Canon 80D camera to create a dataset of 3 408 maize seed images.The dataset was di-vided into training,validation and testing sets at a ratio of 7∶2∶1,and the images in training set were subjec-ted to data augmentation treatment.Then,an attention module called ISPAM(Improved Spatial Attention Module)was designed:based on the convolutional block attention module(CBAM),a new channel attention module ICAM was proposed to improve the channel attention mechanism of CBAM,and the spatial pyramid pooling(SPP)module was introduced to replace the average pooling module and the maximum pooling module in the CBAM spatial attention module.Finally,a maize seed variety recognition model called MobileNetV2_IS-PAM was constructed.Compared with the models incorporating with other attention modules,MobileNetV2_IS-PAM achieved an accuracy of 99.11%on the test set,which was obviously higher than that in MobileNetV2 and the models with SE(Squeeze-and-Excitation)and CBAM attention mechanisms.The visualization of the gradient-weighted class activation mapping network demonstrated that MobileNetV2_ISPAM paid more atten-tion to salient features of maize seed images,thus improved the accuracy.Moreover,the model had a parame-ter size of only 7.15 M,making it suitable for deployment on mobile devices.This study enhanced the ability of model to resist overfitting and improved the classification performance,meanwhile,ensured its lightweight and high efficiency,which provided insights for future researches on deep learning-based maize seed image recog-nition models for mobile platforms.

MobileNetV2ISPAM attention mechanismDeep learningMaize seedVariety recognition

孙孟研、孙彤辉、郝凤琦、穆春华、马德新

展开 >

青岛农业大学传媒学院,山东青岛 266109

山东文化产业职业学院,山东青岛 266699

青岛大学计算机科学技术学院,山东青岛 266071

山东省计算中心(国家超级计算济南中心),山东济南 250014

山东省农业科学院玉米研究所,山东 济南 250100

展开 >

MobileNetV2 ISPAM注意力机制 深度学习 玉米籽粒 品种识别

2024

山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

CSTPCD北大核心
影响因子:0.578
ISSN:1001-4942
年,卷(期):2024.56(12)