首页|基于无人机多光谱遥感和机器学习的苎麻冠层叶片氮素含量预测模型研究

基于无人机多光谱遥感和机器学习的苎麻冠层叶片氮素含量预测模型研究

扫码查看
氮素是对苎麻生长发育影响最显著的营养元素之一,精确且及时地掌握苎麻氮素营养信息对提高其管理效率、精准掌控其生长动态、实施科学化管理等具有重要意义.本研究通过田间试验,设置4个氮肥水平和2个追肥时期,包括不施氮(N0)、施纯氮273 kg/hm2(N1)、施纯氮332 kg/hm2(N2)、施纯氮390 kg/hm2(N3),以及封行期(a)和旺长期(b)追肥,于三季苎麻苗期、封行期、旺长期、成熟期使用大疆精灵4无人机采集光谱图像,结合凯氏定氮法实测氮素数据,使用支持向量机(SVM)、随机森林回归(RFR)、反向传播神经网络(BPNN)、卷积神经网络(CNN))4种机器学习算法,建立了各生育期苎麻氮素营养估测模型.结果表明,基于4种机器学习算法构建的苎麻冠层叶片氮素含量估测模型均具有一定的预测能力,但预测精度存在明显差异,其中,CNN模型在苗期的预测精度最高(验证集R2为0.761,RMSE 0.743,MAE 0.548),能够准确地预测苎麻的氮素营养状况,但在成熟期的泛化能力有待优化;RFR模型的苎麻跨生育期氮素预测性能表现稳定(验证集R2为0.607~0.755,RMSE为0.819~1.156,MAE为0.680~0.930),适合作为长期监测的通用模型.综上,基于无人机多光谱遥感的机器学习模型能够实现对苎麻冠层叶片氮素的良好预测,可为快速监测苎麻长势和精准施肥管理提供理论支持.
Research on Prediction Models for Nitrogen Content in Ramie Canopy Leaves Using UAV-Based Multispectral Remote Sensing and Machine Learning
Nitrogen is one of the most significant nutrients affecting the growth and development of ramie.Accurately and timely mastering the nitrogen nutrition in ramie is crucial for improving management efficiency,precisely controlling growth dynamics,and implementing scientific management practices.This study conduc-ted the field trials with four nitrogen fertilizer levels and two top-dressing periods which were no nitrogen(N0),273 kg/hm2 of pure nitrogen(N1),332 kg/hm2 of pure nitrogen(N2),390 kg/hm2 of pure nitrogen(N3),as well as top-dressing during the row closure period(a)and vigorous growth period(b).Spectral im-ages were collected using DJI Phantom 4 drones at four growth stages(seedling stage,line-closing stage,full growth stage and mature stage)of three seasons of ramie.Combined with measured nitrogen data,four ma-chine learning algorithms including support vector machine(SVM),random forest regression(RFR),back propagation neural network(BPNN),convolutional neural network(CNN)were used to establish nitrogen nutrition estimation models for each growth stage.The results showed that the nitrogen content estimation mod-els based on the four machine learning algorithms all had some predictive capacity,but there were obvious differences in prediction accuracy.Among them,the CNN model had the highest prediction accuracy at seed-ling stage(R2 of 0.761,RMSE of 0.743 and MAE of 0.548 on the validation set),which could accurately predicte the nitrogen nutrition status of ramie,although its generalization ability at mature stage needed to be optimized.The RFR model demonstrated stable performance in nitrogen prediction across growth stages(R2 of 0.607 to 0.755,RMSE of 0.819 to 1.156 and MAE of 0.680 to 0.930 on the validation set),making it suitable as a general model for long-term monitoring.In conclusion,the machine learning model based on UAV multi-spectral remote sensing could achieve better prediction of nitrogen in ramie crown leaves,which could provide theoretical support for rapid monitoring of ramie growth and precise fertilization management.

RamieLeaf nitrogen contentUAVMultispectrumMachine learning

许明志、陈建福、岳云开、焦鑫伟、付虹雨、管圣、张蕾、崔国贤、佘玮

展开 >

湖南农业大学农学院,湖南长沙 410128

怀化市农业科学研究院,湖南怀化 418000

苎麻 叶片氮素含量 无人机 多光谱 机器学习

2025

山东农业科学
山东省农业科学院,山东农学会,山东农业大学

山东农业科学

影响因子:0.578
ISSN:1001-4942
年,卷(期):2025.57(4)