首页|基于PCA-SVM的新能源产业财务预警模型研究

基于PCA-SVM的新能源产业财务预警模型研究

扫码查看
在"碳达峰、碳中和"的背景下,新能源产业初期投入高、技术壁垒多、融资风险大,而且其市场机制不完全成熟,公司会面临较多的财务风险.拟选取 5 年间(2019-2023 年)沪深A股新能源上市公司为研究对象,构建适用于我国新能源产业的主成分分析法和支持向量机相结合的财务危机预警模型.该模型可以精确地对新能源上市公司进行财务风险预测,提高公司人员对于风险的防范意识,促使企业改善不合理的财务结构,为利益相关者识别和预防企业的财务危机提供参考意见.
Research on Financial Early Warning Model of New Energy Industry Based on PCA-SVM
In the context of"carbon peaking and carbon neutrality",the new energy industry has high initial investment,many technical barriers,high financing risks,and its market mechanism is not fully mature,so the company will face more financial risks.It is proposed to select A-share new energy listed companies in Shanghai and Shenzhen from 2019 to 2023 as the research object,and construct a financial crisis early warning model suitable for the combination of principal component analysis and support vector machine for China's new energy industry.The model can accurately predict financial risks of new energy listed companies,improve the awareness of risk prevention of company personnel,promote enterprises to improve their unreasonable financial structure,and provide opinions for stakeholders to identify and prevent financial crises of enterprises.

new energy listed companiesfinancial crisis early warningsupport vector machineprincipal component analysis

王晓华、陈林凡

展开 >

河北工程大学,河北 邯郸 056038

新能源上市公司 财务危机预警 支持向量机 主成分分析法

2024

商业观察

商业观察

ISSN:
年,卷(期):2024.10(23)