首页|基于随机森林模型的太原市夏季大气挥发性有机物分析

基于随机森林模型的太原市夏季大气挥发性有机物分析

扫码查看
当前,挥发性有机物(VOCs)作为O3 的重要前体物得到广泛关注,但对于解耦气象因素的VOCs真实排放情况了解有限.在太原市夏季O3 污染时期进行VOCs样品采集,研究期间VOCs体积分数均值为 30.6×10-9±9.3×10-9,平均温度为 26.7℃±3.3℃,光解速率(以NO2 代表,JNO2)日峰值为 9.2 s-1±1.0×10-3 s-1.为厘清人为排放和气象因素对VOCs的影响,使用基于机器学习的随机森林模型,量化去气象前后VOCs浓度变化.结果表明,气象归一化后TVOCs体积分数降幅为 0.4%,表明太原市夏季不利的气象条件导致TVOCs浓度增加.
Analysis of Summer Atmospheric Volatile Organic Compounds in Taiyuan City Based on Random Forest Model
In recent years,volatile organic compounds(VOCs)have received extensive attention as an important precursor of O3,but the understanding of the real emission of VOCs that decouple meteorological factors is limited.In this case,VOCs samples were collected during the O3 pollution period in Taiyuan in summer.The average concentration of VOCs during the study period was 30.6×10-9±9.3×10-9,the average temperature was 26.7℃±3.3℃,and the daily peak of photolysis rate(represented by NO2,JNO2)was 9.2 s-1±1.0×10-3 s-1.In order to clarify the impact of anthropogenic emissions and meteorological factors on VOCs,a random forest model based on machine learning was used to quantify the changes in VOCs concentration before and after de-meteorology.The results showed that the concentration of TVOCs decreased by 0.4%after meteorological normalization,indicating that the unfavorable meteorological conditions in Taiyuan in summer led to the increase of TVOCs concentration.

O3VOCsrandom forest modelmeteorological normalization

邵博、崔阳、何秋生、郭利利

展开 >

太原科技大学 环境与资源学院,山西 太原 030024

O3 VOCs 随机森林模型 气象归一化

2024

山西化工
山西省煤化工发展促进中心 山西省化工学会

山西化工

影响因子:0.293
ISSN:1004-7050
年,卷(期):2024.44(7)