首页|基于粒子群算法的高炉炼铁工序优化技术

基于粒子群算法的高炉炼铁工序优化技术

扫码查看
为实现对高炉炼铁工序的优化,提高产出生铁的合格率,提出了基于粒子群算法的高炉炼铁工序优化方法.将高炉炼铁生产单位的经济性需求作为函数构建目标,构建基于冶炼时间层面、成本层面的优化目标函数.引进粒子群算法,通过设计初始化迭代粒子,进行高炉炼铁过程中不同环节或不同工序工艺参数的优化,实现对最优加工生产参数的设计.基于多目标角度,进行目标函数最优解之间的协调化处理,完成基于多目标的工序优化设计.以某地区大型高炉炼铁生产企业为例,进行对比实验.实验结果证明,相比传统方法,在实际中应用优化方法,不仅可以提高炼铁过程中的高炉利用系数,还可以提高生铁合格率.
Optimization Technology of Blast Furnace Ironmaking Process Based on Particle Swarm Optimization
In order to realize the optimization of blast furnace ironmaking process and improve the pass rate of producing pig iron,an optimization method of blast furnace ironmaking process based on particle swarm algorithm was proposed.Taking the economic demand of blast furnace ironmaking production units as the function construction goal,this paper constructs the optimization objective function based on the smelting time level and cost level,introduces particle swarm algorithm,initializes iterative particles through design,and carries out different links or different processes in the blast furnace ironmaking process.The optimization of the process parameters realizes the design of the optimal processing and production parameters.Based on the multi-objective angle,the coordinated processing between the optimal solutions of the objective function is carried out,so as to complete the process optimization design based on multi-objectives.Taking a large blast furnace ironmaking enterprise in a certain area as an example,a comparative experiment is designed.The experimental results show that compared with the traditional method,the designed optimization method can not only improve the blast furnace utilization coefficient in the ironmaking process,but also improve the pig iron pass rate in practical application.

particle swarm optimizationprocess parametersobjective functionoptimization technologyprocessblast furnace ironmaking

辛博

展开 >

中钢设备有限公司,北京 100080

粒子群算法 工艺参数 目标函数 优化技术 工序 高炉炼铁

2024

山西冶金
山西省金属学会 山西省有色金属学会

山西冶金

影响因子:0.139
ISSN:1672-1152
年,卷(期):2024.47(1)
  • 10