首页|基于改进神经网络算法的中碳钢热处理工艺参数预测方法研究

基于改进神经网络算法的中碳钢热处理工艺参数预测方法研究

扫码查看
传统的BP神经网络算法应用于热处理工程实践,常出现数据收敛速度较低,易陷入局部最优解等状况,通过搭建遗传算法优化的神经网络,即GA-BP神经网络,利用遗传算法强大的全局优化性,解决了传统BP神经网络易陷入局部最优解、容易过拟合等弊端;再通过采集热处理实验数据,训练并测试单独的BP神经网络和GA-BP神经网络.借助MATLAB能够运行部分程序的特点,采用优化前的BP神经网络和优化后的GA-BP神经网络对低碳钢热处理的优化结果进行比较,确认GA-BP神经网络算法在金属热处理优化的作用及优越性.将此研究提出的GA-BP神经网络算法应用于其他各类金属的热处理工艺优化中去,可更好地指导工程实践.
Research on Process Parameter Prediction Method of Medium Carbon Steel Heat Treatment Based on Improved Neural Network Algorithm
In the past practice of heat treatment engineering,the traditional BP neural network algorithm was applied to the practice of heat treatment engineering,and the data convergence speed was often low,and it was easy to fall into the local optimal solution.By establishing a neural network optimized by genetic algorithm,namely GA-BP neural network,the powerful global optimization of genetic algorithm was utilized.The traditional BP neural network is easy to fall into the local optimal solution,easy to overfit and other drawbacks,and then by collecting heat treatment experiment data,training and testing the separate BP neural network and GA-BP neural network.With the help of MATLAB,which can run some programs,the optimization results of low carbon steel heat treatment by BP neural network before optimization and GA-BP neural network after optimization are compared to confirm the role and advantages of GA-BP neural network algorithm in metal heat treatment optimization.The GA-BP neural network algorithm proposed in this paper can be applied to other kinds of metal heat treatment process optimization to guide engineering practice.

BP neural networkgenetic algorithmmedium carbon steelheat treatmentprocess optimization

朱贺、徐涵、赵庆

展开 >

中国民用航空飞行学院民航监察员培训学院,四川 广汉 618300

中国民用航空飞行学院航空工程学院,四川 广汉 618300

中国民用航空飞行学院空中交通管理学院,四川 广汉 618300

BP神经网络 遗传算法 中碳钢 热处理 工艺优化

四川省科技厅省级科技计划重点项目中国民用航空飞行学院面上科研项目

2019YFG0311J2022-110

2024

山西冶金
山西省金属学会 山西省有色金属学会

山西冶金

影响因子:0.139
ISSN:1672-1152
年,卷(期):2024.47(3)
  • 9