首页|转炉炼钢终点碳温预测与控制模型优化研究

转炉炼钢终点碳温预测与控制模型优化研究

扫码查看
为提高转炉炼钢的生产效率和经济效益,提出以改进神经网络学习极限机的预测模型为基础,引入改进的粒子群算法作为终点碳温控制优化模型.经过研究表明,转炉炼钢温度偏差在15℃左右的样本有89个,命中率为62.676%.碳含量w(C)偏差在0.015左右的样本有105个,命中率为72.112%.由此可见,预测模型及控制模型对转炉炼钢终点碳温控制的有效性以及降低能源消耗均具有重要意义.
Research on the Prediction and Control Model Optimization of End Carbon Temperature in Converter Steelmaking
In order to improve the production efficiency and economic benefits of converter steelmaking,an improved neural network learning extreme machine prediction model is proposed,and an improved particle swarm optimization algorithm is introduced as the optimization model for endpoint carbon temperature control.After research,it has been shown that there are 89 samples with a converter steelmaking temperature deviation of around 15 ℃,and the hit rate is 62.676%.There are 105 samples with a carbon content deviation w(C)of around 0.015,with a hit rate of 72.112%.It can be seen that the effectiveness of prediction and control models in controlling the endpoint carbon temperature of converter steelmaking and reducing energy consumption are of great significance.

converter steelmakingend carbon temperatureneural networkslearning extreme machine

孙大成

展开 >

中钢设备有限公司,北京 100080

转炉炼钢 终点碳温 神经网络 学习极限机

2024

山西冶金
山西省金属学会 山西省有色金属学会

山西冶金

影响因子:0.139
ISSN:1672-1152
年,卷(期):2024.47(3)
  • 6