首页|一种基于CNN的带钢表面缺陷识别方法

一种基于CNN的带钢表面缺陷识别方法

扫码查看
带钢表面质量是衡量产品性能的重要指标,准确识别带钢表面缺陷是带钢生产过程的关键一环,剪除缺陷带钢对于提升带钢成材率具有重要意义.为提升带钢表面缺陷识别的准确率,构建了基于CNN的带钢表面缺陷识别模型,通过多个卷积层提取图像特征,从而自动识别缺陷类别,实现了端到端的带钢表面缺陷识别过程.实验结果表明,CNN模型对于带钢表面缺陷识别准确率达到了 96.5%,识别一张图片时间仅为1.5 ms,基本满足了带钢缺陷识别要求.
Surface Defect Recognition of Strip Steel Based on CNN
The surface quality of strip steel is an important indicator for measuring product performance.Accurately identifying surface defects of strip steel is a key link in the production process of strip steel.Cutting off defective strip steel is of great significance for improving the yield of strip steel.In order to improve the accuracy of surface defect recognition for strip steel,a CNN based model for surface defect recognition of strip steel was constructed.Image features were extracted through multiple convolutional layers to automatically identify defect categories,achieving end-to-end surface defect recognition of strip steel.The experimental results show that the CNN model achieves an accuracy of 96.5%for identifying surface defects on strip steel,and the recognition time for one image is only 1.5 ms,which basically meets the requirements of strip steel defect recognition.

CNNsteel strip surfacedefect recognition

白贵龙、牛锐祥

展开 >

山西太钢不锈钢股份有限公司硅钢事业部,山西 太原 030002

CNN 带钢表面 缺陷识别

2024

山西冶金
山西省金属学会 山西省有色金属学会

山西冶金

影响因子:0.139
ISSN:1672-1152
年,卷(期):2024.47(6)
  • 6