首页|基于级联BP网络的转炉合金化模型开发

基于级联BP网络的转炉合金化模型开发

扫码查看
脱氧合金化是转炉冶炼流程的重要一环,成分稳定性是否精确直接影响后续精炼效果.由于受出钢氧含量等影响,合金元素收得率影响因素较多,给脱氧合金化模型的创建带来一定难度,很多传统转炉也没有配备合金化模型.基于级联BP神经网络技术,以数据分析筛选重要影响因子作为网络输入,钢水量、合金量作为输出建立网络,最终以VBA程序形成合金化应用软件.该软件的应用促使实际生产取得重要进步,结果表明:钢水量预测与实际偏差2 t以内命中率97.5%,硅锰合金预测与实际偏差50 kg以内命中率94.6%,硅铁量和实际值的偏差10 kg以内达到命中率98.5%,增碳剂加入量和实际值的偏差5 kg以内命中率89.8%.
Development of Converter Alloying Model Based on Cascaded BP Network
Deoxygenation alloying is an important part of the converter smelting process,and the accuracy of composition stability directly affects the subsequent refining effect.Due to the influence of oxygen content in the steel,there are many factors that affect the yield of alloy elements,making it difficult to create deoxygenation alloying models.Many traditional converters are also not equipped with alloying models.This article is based on cascaded BP neural network technology,using data analysis to screen important influencing factors as network inputs,steel content and alloy content as outputs to establish a network.Finally,an alloying application software is formed using VBA program,which has made significant progress in practical production.The predicted and actual deviation of steel content is within 2 tons,with a hit rate of 97.5%,the predicted and actual deviation of silicon manganese alloy is within 50 kilograms,with a hit rate of 94.6%,and the deviation of silicon iron content and actual value is achieved,Within 10 kilograms,achieve a hit rate of 98.5%,with a deviation between the amount of carburetor added and the actual value,and a hit rate of 89.8%within 5 kilograms.

neural networkscascade BPalloying model

张立夫

展开 >

罗源闽光钢铁公司炼钢厂,福建 福州 350001

神经网络 级联BP 合金化模型

2024

山西冶金
山西省金属学会 山西省有色金属学会

山西冶金

影响因子:0.139
ISSN:1672-1152
年,卷(期):2024.47(9)