首页|基于BP神经网络与多源数据河北省降水量空间分布预测研究

基于BP神经网络与多源数据河北省降水量空间分布预测研究

扫码查看
采用河北省范围内的78个标准气象站点的降水量数据,运用BP神经网络建立基于地形、海陆位置变量的降水量空间分布预测模型,进而提取河北省降水量空间分布特征。结果表明,河北省气象站点观测降水量介于394。06 mm~764。87 mm之间,符合正态分布;BP回归模型能够拟合协变量与观测降水量之间非线性关系,模型精度R2为0。61,MAE和RMSE依次为43。25 mm、67。16 mm;预测结果表明河北省降水量呈现南多北少、东多西少的趋势,降水中心位于唐山东南部。研究结果可为区域防护及水资源利用提供决策依据。
Prediction of Spatial Distribution of Precipitation in Hebei Province Based on BP Neural Network and Multi-source Data
Based on the precipitation data of 78 standard meteorological stations in Hebei Province,the spatial distribution prediction model of precipitation based on terrain,sea and land location variables was established by BP neural network,and the spatial distribution characteristics of precipitation in Hebei Province were extracted.The results show that the precipitation observed by meteorological stations in Hebei Province ranges from 394.06 mm to 764.87 mm,which accords with normal distribution.The BP regression model can fit the nonlinear relationship between the covariable and the observed precipitation.The accuracy of the model R2 is 0.61,and the MAE and RMSE are 43.25 mm and 67.16 mm respectively.The forecast results show that the precipitation in Hebei Province is more in the south than in the north and less in the east than in the west,and the precipitation center is located in the southeast of Tangshan.The results can provide a basis for decision-making of regional protection and water resources utilization.

BP neural networkPrecipitationSpatial prediction

朱俊峰

展开 >

河北省承德水文勘测研究中心,河北承德 067000

BP神经网络 降水量 空间预测

2024

陕西水利
陕西省城乡供水管理办公室

陕西水利

影响因子:0.185
ISSN:1673-9000
年,卷(期):2024.(4)
  • 9