首页|集成GPM卫星与地面观测数据的辽宁省降雨侵蚀力提取

集成GPM卫星与地面观测数据的辽宁省降雨侵蚀力提取

扫码查看
近年来随着人类活动的增强,水土流失量不断增加,对生态环境造成一定影响。为提高水土保持水平,以辽宁地面观测降雨量资料和环境变量数据为基础,建立基于GBDT算法的融合模型预测辽宁省降雨侵蚀力空间分布信息;运用独立验证法评估预测效果。结果表明:辽宁省降雨侵蚀力介于3039 MJ·mm/(hm2·h·a)、7041 MJ·mm/(hm2·h·a)之间,呈现自南向北、自西向东地带性减少;GBDT算法对降雨侵蚀力预测精度R2 达0。89,预测精度高于经典OK、IDW模型。研究结果可为水土保持提供数据支持和方法。
Extraction of Rainfall Erosivity in Liaoning Province by Integrating GPM Satellite and Ground Observation Data
In recent years,with the enhancement of human activities,the amount of soil erosion is increasing,which has a certain impact on the ecological environment.In order to improve the level of soil and water conservation,a fusion model based on GBDT algorithm was established to predict the spatial distribution information of rainfall erosivity in Liaoning Province based on the data of ground observation rainfall and environmental variables in Liaoning Province.The independent verification method was used to evaluate the prediction effect.The results show that the rainfall erosivity in Liaoning Province is between 3039 MJ·mm/(hm2·h·a)and 7041 MJ·mm/(hm2·h·a),showing a zonal decrease from south to north and from west to east.The prediction accuracy R2 of rainfall erosivity by GBDT algorithm is 0.89,which is higher than that of classical OK and IDW models.The research results can provide data support and methods for soil and water conservation.

GPM satellite dataprecipitation data of meteorological stationsGBDT algorithmrainfall erosivity

刘鑫、王梓林

展开 >

辽宁省水利水电勘测设计研究院有限责任公司,辽宁 沈阳 110000

GPM卫星数据 气象站点降水数据 GBDT算法 降雨侵蚀力

辽宁省档案科技项目

2023-R-027

2024

陕西水利
陕西省城乡供水管理办公室

陕西水利

影响因子:0.185
ISSN:1673-9000
年,卷(期):2024.(10)