首页|基于 MTF-ResNet-ViT的风电机组精细级联故障预警

基于 MTF-ResNet-ViT的风电机组精细级联故障预警

扫码查看
提出一种基于MTF-ResNet-ViT的风电机组(WT)精细级联故障预警方法.第1级将SCADA数据转换为马尔可夫转移场图像,利用残差网络提取故障特征,实现WT大部件状态监测和故障预警,并对故障代码数据进行标签与扩充.第2级将标签后数据灰度图像化后,利用视觉变换器建立故障代码预警模型,实现精细故障代码预警.实验结果表明,该方法可以有效标签和扩充故障代码数据,实现精细故障代码早期预警.
The Cascaded Precise Faults Early Warning of Wind Turbine Based on MTF-ResNet-ViT
This paper proposes a cascaded precise WT fault early warning method based on MTF-ResNet-ViT.In the first stage,the SCADA data is converted into Markov Transition Field images,and the fault characteristics is extracted by residual network to realize condition monitoring and fault early warning for multiple main components simultaneously,then labeled and enhanced the fault code data.In the second stage,the grayscale labeled SCADA data images are processed by the vision transformer,to establish the fault code type early warning model and realized precise fault codes early warning.The results show that the proposed method can effectively label and enhance the fault code data and realize precise WT fault codes early warning.

wind turbinedata graphizationfault early warningSCADA data

王硕、贾锋、周全、符杨

展开 >

教育部海上风电技术工程研究中心(上海电力大学),上海 200090

国家电网上海市市南供电公司,上海 200030

风电机组 数据图像化 故障预警 SCADA数据

上海市科技创新行动计划

22dz1206100

2024

上海电力大学学报
上海电力学院

上海电力大学学报

影响因子:0.401
ISSN:2096-8299
年,卷(期):2024.40(1)
  • 19