首页|基于相似波动聚类与SA-LightGBM的日前电价预测

基于相似波动聚类与SA-LightGBM的日前电价预测

扫码查看
日前电价的准确预测对于提高市场主体的交易收益至关重要.针对高比例新能源参与现货市场交易导致日前电价预测难度增加的问题,提出了一种基于相似波动聚类与自注意力(SA)机制的轻型量梯度提升机(SA-LightGBM)日前电价预测方法.首先,基于电价数据特征,采用改进模糊C均值(FCM)聚类对波动场景进行分类,得到3种波动场景下的数据集.其次,在不同波动场景下,采用Kendall相关系数对影响电价的特征进行相关性分析,选定输入特征.然后,基于波动场景与输入特征建立SA-LightGBM预测模型.最后,利用国内某省电力交易平台提供的历史数据,验证了所提模型的有效性和可靠性.
Day-Ahead Electricity Price Prediction Based on Similar Fluctuation Clustering and SA-LightGBM
The precise forecasting of electricity prices for the following day holds significant importance in enhancing the revenue generated by market participants.Addressing the challenge posed by the increased presence of new energy sources in spot market transactions,a novel approach for predicting day-ahead electricity prices using light gradient boosting machine(LightGBM)is introduced.The method incorporates similar wave clustering and self-attention(SA)techniques.Initially,fuzzy C-means(FCM)clustering is applied to categorize fluctuation scenarios based on electricity price data characteristics,resulting in distinct datasets for each scenario.Subsequently,Kendall correlation coefficient is utilized to analyze the correlation of features influencing electricity prices across different fluctuation scenarios,facilitating the selection of input features.The SA-LightGBM prediction model is then constructed,tailored to the specific fluctuation scenario and input characteristics.Finally,the proposed algorithm's effectiveness and dependability are assessed using historical data sourced from a provincial power trading platform in China.

day-ahead electricity price predictionfuzzy c-meansKendall correlation coefficientself-attentionlight gradient boosting machine

郭鑫炜、赵耀

展开 >

上海电力大学电气工程学院,上海 200090

日前电价预测 模糊C均值 Kendall相关系数 自注意力机制 轻型量梯度提升机

2024

上海电力大学学报
上海电力学院

上海电力大学学报

影响因子:0.401
ISSN:2096-8299
年,卷(期):2024.40(6)