首页|FARMER: A novel approach to file access correlation mining and evaluation reference model

FARMER: A novel approach to file access correlation mining and evaluation reference model

扫码查看
File semantic has proven effective in optimizing large scale distributed file system.As a consequence of the elaborate and rich I/O interfaces between upper layer applications and file systems,file system can provide useful and insightful information about semantic.Hence,file semantic mining has become an increasingly important practice in both engineering and research community.Unfortunately,it is a challenge to exploit file semantic knowledge because a variety of factors could affect this information exploration process.Even worse,the challenges are exacerbated due to the intricate interdependency between these factors,and make it difficult to fully exploit the potentially important correlation among various semantic knowledges.This article proposes a file access correlation miming and evaluation reference (FARMER) model,where file is treated as a multivariate vector space,and each item within the vector corresponds a separate factor of the given file.The selection of factor depends on the application,examples of factors are file path,creator and executing program.If one particular factor occurs in both files,its value is non-zero.It is clear that the extent of inter-file relationships can be measured based on the likeness of their factor values in the semantic vectors.Benefit from this model,FARMER represents files as structured vectors of identifiers,and basic vector operations can be leveraged to quantify file correlation between two file vectors.FARMER model leverages linear regression model to estimate the strength of the relationship between file correlation and a set of influencing factors so that the "bad knowledge" can be filtered out.To demonstrate the ability of new FARMER model,FARMER is incorporated into a real large-scale object-based storage system as a case study to dynamically infer file correlations.In addition FARMER-enabled optimize service for metadata prefetching algorithm and object data layout algorithm is implemented.Experimental results show that is FARMER-enabled prefetching algorithm is shown to reduce the metadata operations latency by approximately 30%-40% when compared to a state-of-the-art metadata prefetching algorithm and a commonly used replacement policy.

storage management file correlationfile system managementmining method and algorithms

XIA Peng、FENG Dan、WANG Fang

展开 >

Computer College, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Wuhan National Laboratory for Optoelectronic, Wuhan 430074, P. R. China

Project supported by the National Basic Research Program of ChinaProject supported by the National Basic Research Program of ChinaUS National Science Foundation国家自然科学基金and HUST-SRF

2004CB3182012011CB302300CCF-0621526607030462007Q021B

2011

上海大学学报(英文版)
上海大学

上海大学学报(英文版)

影响因子:0.196
ISSN:1007-6417
年,卷(期):2011.15(6)
  • 37