首页|基于分位数回归模型和经验模态分解的全球变暖问题研究

基于分位数回归模型和经验模态分解的全球变暖问题研究

扫码查看
利用分位数回归模型和经验模态分解(empirical mode decomposition,EMD)方法对气候及其变化进行分析和预测.首先,采用全球热力图对气温数据进行描述统计,并采用经验模态分解方法降噪获取趋势项来引入全球气温周期概念,探究全球气候变暖趋势;然后,基于多元线性回归模型及分位数回归模型寻找全球气温的影响因素,并对气温进行建模及预测.研究结果可为全球气候分析提供统计学支撑.
Global warming research based on quantile regression model and empirical mode decomposition
The purpose of this study is to analyze climate's variation trend and forecast the climate.The main methods are known as quantile regression and empirical mode de-composition(EMD).Firstly,a global heat map is utilized for the descriptive statistics of global temperature data.The EMD method is applied for data denoising to analyze global temperature's variation trend,and the concept of global temperature cycle is introduced.These aim to study the trend of global warming.Secondly,the multivariate linear regres-sion model and the quantile regression model are applied to identify factors influencing global temperature.Then the temperature model is built to predict temperature changes.The findings can provide statistical support for global climate analysis.

greenhouse effectglobal warmingquantile regressionempirical mode de-composition(EMD)

肖洁、艾敏、倪中新

展开 >

上海大学经济学院,上海 200444

上海大学金融信息研究中心,上海 200444

温室效应 全球变暖 分位数回归 经验模态分解

国家自然科学基金资助项目

71301099

2024

上海大学学报(自然科学版)
上海大学

上海大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.579
ISSN:1007-2861
年,卷(期):2024.30(1)
  • 12