首页|基于循环神经网络的2-DOF软体机械臂运动建模与控制

基于循环神经网络的2-DOF软体机械臂运动建模与控制

扫码查看
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrent neural network,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrent unit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6~8 mm,显著降低了软体机器人的控制与建模难度.
Motion modeling and control of a 2-DOF soft manipulator based on a recurrent neural network
To address the difficulty of modeling and control of existing soft manipulators due to their small material stiffness and unstable modulus,this study proposes a method based on a recurrent neural network(RNN)for the motion modeling of a two-degree-of-freedom(2-DOF)soft manipulator with control.A motion-capture instrument was used to collect the position coordinates under different pressures and loads,and the coordinates were imported into a gated recurrent unit(GRU)neural network model for training.The accuracy of the test set reached 98.87%when the hyperparameters were adjusted to the optimal network structure.Accordingly,a mapping function for the pressure and load at the end position was constructed.Experimental results showed that the proposed method could improve the control accuracy of the manipulator by approximately 6~8 mm and significantly reduced the difficulty of control and modeling of a soft robot.

recurrent neural network(RNN)gated recurrent unit(GRU)modelsoft manipulatormodeling and control

丁卫、郑云、钟宋义、杨扬

展开 >

上海大学机电工程与自动化学院,上海 200444

循环神经网络 门控循环单元模型 软体机械臂 建模与控制

2024

上海大学学报(自然科学版)
上海大学

上海大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.579
ISSN:1007-2861
年,卷(期):2024.30(3)
  • 4