首页|基于改进ORB算法的遥感图像匹配

基于改进ORB算法的遥感图像匹配

扫码查看
针对遥感图像匹配中存在的误匹配率高、匹配速度慢等问题,结合相似图像局部结构一致的思想,提出一种将ORB特征提取算子与BRISK特征描述算子相结合的遥感图像匹配算法.首先使用ORB算法的特征点提取算子对特征点进行检测,再使用BRISK算法的特征点描述算子对检测到的特征点建立特征描述符,然后基于汉明距离使用暴力匹配完成特征点匹配,最后使用LPM算法剔除错误匹配点.实验结果表明:本文算法提取的特征点数量、匹配精确度和运行速度都满足遥感图像匹配的要求;相较于ORB、BRISK算法,做到了速度和精度的较好平衡,展现出了良好的匹配性能.
Remote Sensing Image Matching Based on Improved ORB Algorithm
Aiming at the problems of high false matching rate and slow matching speed in remote sensing image matching,combined with the idea of consistent local structure of similar images,a remote sensing image matching algorithm combining ORB feature extraction operator and BRISK feature description operator was proposed.First,the feature point extraction operator of the ORB algorithm was used to detect the feature points;second,the feature point description operator of the BRISK algorithm was used to establish feature descriptors for the detected feature points;then,brute force matching based on the Hamming distance was used to complete the feature point matching;finally,the LPM algorithm was used to eliminate the wrong matching points.The experimental results showed that the number of feature points,matching accuracy and running speed extracted by the proposed algorithm all met the requirements of remote sensing image matching;compared with the ORB and BRISK algorithms,it achieved a better balance between speed and accuracy,showing a good matching performance.

remote sensing imageimage matchingORB algorithmBRISK algorithmLPM algorithm

田丹、陈钰坤

展开 >

沈阳大学 智能科学与工程学院,辽宁 沈阳 110044

沈阳大学 信息工程学院,辽宁 沈阳 110044

遥感图像 图像匹配 ORB算法 BRISK算法 LPM算法

辽宁省自然科学基金计划资助项目

2023-MS-322

2024

沈阳大学学报(自然科学版)
沈阳大学

沈阳大学学报(自然科学版)

CSTPCD
影响因子:0.475
ISSN:2095-5456
年,卷(期):2024.36(1)
  • 20