首页|基于改进YOLOv3的小尺度车辆目标检测算法

基于改进YOLOv3的小尺度车辆目标检测算法

扫码查看
针对交通卡口车辆目标检测时,距离卡口相机相对较远的小目标车辆检测结果存在误检、漏检、精度低等问题,提出对原始YOLOv3目标检测模型的加强特征提取网络层进行增加的改进方法,并将YOLOv3原始损失函数进行优化,动态地调整不同尺度检测框的比重.在6组不同像素数据集上进行了模型择优对比实验,实验结果表明:特征提取层设定为5层的YOLOv3-5L模型,随着图像分辨率的提升,在收敛速度与小目标检测精度方面都取得了最优的效果,在2 400×2 400像素下,YOLOv3-5L模型的平均精确值达到了 96.5%,比原始YOLOv3网络提升了 2.0%.
Small Scale Vehicle Target Detection Algorithm Based on Improved YOLOv3
Aiming at the problems of false detection,missed detection,and low accuracy in the detection results of small target vehicles relatively far from the camera during traffic checkpoint vehicle target detection,an improved method was proposed to enhance the feature extraction network layer of the original YOLOv3 object detection model,and optimized the YOLOv3 original loss function to dynamically adjust the proportion of detection boxes at different scales.A model selection comparison experiment was conducted on 6 different pixel datasets,and the experimental results showed that the YOLOv3-5L model with a feature extraction layer set of 5 layers achieved the best convergence speed and small object detection accuracy as the image resolution improved.At 2 400辽×2 400 pixels,the average accuracy of the YOLOv3-5L model reached 96.5%,which was 2.0%higher than the original YOLOv3 network.

vehicle target detectionYOLOv3strengthening feature extraction layerloss functionsmall target detection

石春鹤、张浩楠

展开 >

沈阳大学科技创新学院,辽宁 沈阳 110044

沈阳大学信息工程学院,辽宁 沈阳 110044

车辆目标检测 YOLOv3 加强特征提取层 损失函数 小目标检测

2024

沈阳大学学报(自然科学版)
沈阳大学

沈阳大学学报(自然科学版)

CSTPCD
影响因子:0.475
ISSN:2095-5456
年,卷(期):2024.36(3)
  • 12