沈阳大学学报(自然科学版)2024,Vol.36Issue(3) :221-229.

基于改进U-Net的车间场景分割

Workshop Scene Segmentation Method Basedon Improved U-Net

高强 何至诚 韩晓微
沈阳大学学报(自然科学版)2024,Vol.36Issue(3) :221-229.

基于改进U-Net的车间场景分割

Workshop Scene Segmentation Method Basedon Improved U-Net

高强 1何至诚 2韩晓微1
扫码查看

作者信息

  • 1. 沈阳大学科技创新研究院,辽宁 沈阳 110044
  • 2. 沈阳大学信息工程学院,辽宁 沈阳 110044
  • 折叠

摘要

为了更好地对车间环境进行把控,同时针对车间目标像素级分割任务样本少、类别多、尺度变化大导致的语义分割精度低的问题,设计了一种改进的U-Net车间场景分割模型.改进的模型采用Rep-VGG轻量级主干网络,并在U-Net上采样阶段引入金字塔拆分注意力机制,以增加模型的特征表达能力及推理速度.模型训练则采用Dice-Cross Entropy组合损失函数以解决样本不均衡导致的难以训练的问题.实验数据表明该模型在自建的小样本车间数据集上可达到快速、轻量化及高精度的分割效果.

Abstract

In order to better analyze the workshop environment and solve the problems of low semantic segmentation accuracy caused by few sample samples,many categories and large scale changes of the target pixel-level segmentation task of the workshop,an improved U-Net workshop scene segmentation model was designed.The improved model used Rep-VGG lightweight backbone network,and introduced the pyramid splitting attention mechanism in the sampling stage of U-net to increase the feature representation ability and reasoning speed of the model.In model training,Dice-Cross Entropy combination loss function was adopted to solve the problem of difficult training caused by unbalanced samples.Experimental data showed that the model could achieve fast,lightweight and high-precision segmentation on the self-built small-sample workshop dataset.

关键词

语义分割/轻量级神经网络/注意力机制/组合损失函数/深度学习

Key words

semantic segmentation/lightweight neural network/attention mechanism/combined loss function/deep learning

引用本文复制引用

基金项目

辽宁省教育厅面上项目(LJKMZ20221827)

出版年

2024
沈阳大学学报(自然科学版)
沈阳大学

沈阳大学学报(自然科学版)

CSTPCD
影响因子:0.475
ISSN:2095-5456
参考文献量2
段落导航相关论文