沈阳大学学报(自然科学版)2024,Vol.36Issue(3) :262-266,封3.

基于XGBoost算法的人-虎共存区域风险等级划分

Risk Classification Model of Human-Tiger Coexistence Area Based on XGBoost Algorithm

曲智林 桂宁晨
沈阳大学学报(自然科学版)2024,Vol.36Issue(3) :262-266,封3.

基于XGBoost算法的人-虎共存区域风险等级划分

Risk Classification Model of Human-Tiger Coexistence Area Based on XGBoost Algorithm

曲智林 1桂宁晨1
扫码查看

作者信息

  • 1. 东北林业大学理学院,黑龙江哈尔滨 150040
  • 折叠

摘要

以2014-2019年珲春地区红外相机拍摄的东北虎数据为基础,基于XGBoost算法构建了虎出没区域风险等级划分模型.由模型检验可知:模型的准确率为93.51%,精确率为93.85%,召回率为93.08%,F1值为93.31%,Cohen's Kappa统计系数为90.2%.研究结果表明:基于XGBoost算法构建的人-虎共存区域风险等级划分模型分类效果好、预测准确度高,运用该模型对人-虎共存区域进行风险等级划分是可行的.

Abstract

Based on the data of Siberian tigers taken by infrared cameras in Hunchun from 2014 to 2019,a risk classification model of tiger infested areas was constructed using XGBoost algorithm.The model test showed that the accuracy rate of the model was 93.51%,the precision was 93.85%,the recall rate was 93.08%,the F1-score value was 93.31%,and the Cohen's Kappa statistical coefficient was 90.2%.The research results showed that the risk classification model of human-tiger coexistence area based on XGBoost algorithm had good classification effect and high prediction accuracy.It was feasible to use this model to classify the risk level of human-tiger coexistence area.

关键词

人-虎共存区域/XGBoost算法/风险等级/划分模型/红外相机陷阱

Key words

human-tiger coexistence area/XGBoost algorithm/risk level/model division/infrared camera traps

引用本文复制引用

基金项目

国家自然科学基金(12001088)

黑龙江省自然科学基金(2572022DS04)

出版年

2024
沈阳大学学报(自然科学版)
沈阳大学

沈阳大学学报(自然科学版)

CSTPCD
影响因子:0.475
ISSN:2095-5456
参考文献量7
段落导航相关论文