首页|基于改进人工蜂群算法的绿色冷链物流优化

基于改进人工蜂群算法的绿色冷链物流优化

扫码查看
针对目前冷链物流存在的运输成本高、腐败率高以及污染物排放量高等问题,建立了考虑冷链配送过程中所产生的车辆运营成本以及碳排放的绿色冷链配送路径的优化模型。为了避免求解过程陷入局部最优,在人工蜂群算法的基础上,加入细菌觅食行为和烟花爆炸算子对其进行改进,以加快算法收敛速度和提高计算精度;将改进算法应用于生鲜产品冷链物流配送路径优化模型中,并进行实验仿真。结果显示,与传统人工蜂群算法、蚁群算法等相比较,改进后的人工蜂群算法所得的配送路径规划方案更优,可以更好地平衡配送及污染物排放等成本。
Optimization of Green Cold Chain Logistics Based on Improved Artificial Bee Colony Algorithm
Aiming at the problems of high transportation cost,high corruption rate and high pollutant emission in cold chain logistics,an optimization model of green cold chain distribution path considering vehicle operation cost and carbon emission in cold chain distribution process was established.In order to avoid falling into local optimum,the artificial bee colony algorithm was improved by adding bacteria foraging behavior and fireworks explosion operator to speed up the convergence of the algorithm and improve the calculation accuracy.The improved algorithm was applied to the optimization model of cold chain logistics distribution path of fresh products,and the experimental simulation was carried out.The results show that compared with the traditional artificial bee colony algorithm and ant colony algorithm,the improved artificial bee colony algorithm has better distribution path planning scheme,which could better balance the costs of distribution and pollutant discharge.

cold chain logisticsgreen logisticspath optimizationimproved artificial bee colony algorithmcarbon emission

张天瑞、吴铁铮、于海跃

展开 >

沈阳大学机械工程学院,辽宁 沈阳 110044

沈阳工程学院信息学院,辽宁 沈阳 110136

长春工业大学机电工程学院,吉林长春 130012

冷链物流 绿色物流 路径优化 改进人工蜂群算法 碳排放

2024

沈阳大学学报(自然科学版)
沈阳大学

沈阳大学学报(自然科学版)

CSTPCD
影响因子:0.475
ISSN:2095-5456
年,卷(期):2024.36(6)