首页|基于优化VMD和能量相对熵的地铁车载电容状态识别

基于优化VMD和能量相对熵的地铁车载电容状态识别

扫码查看
针对地铁车载电容性能退化无明显征兆这一现状,提出一种基于优化变分模态分解(variational mode decomposition,VMD)和能量相对熵的电容状态识别方法.通过Matlab仿真建模,提取电容在正常状态和不同退化情况下负载侧输出电压信号并利用优化VMD进行分解得到若干模态分量.将其作为特征样本,对上述各状态的本征模态分量的能量特征向量进行相对熵分析,得到电容退化识别阈值.实际应用时,将待测电路的能量相对熵值与识别阈值进行比较从而完成电容状态识别.分析结果表明,此方法简单有效,判断正确率为93.3%.
Capacitance status identification of subway vehicles based on optimized VMD and energy relative entropy
Aiming at the problem that there is no obvious symptom of capacitance performance degradation on subway vehicles,a capacitance status identification method based on optimized variational mode decomposition(VMD)and energy relative entropy was proposed.By establishing a Matlab circuit model,the output voltage signals of the capacitance at normal status or different degradation conditions were extracted,then the characteristic samples were obtained by decomposition of optimized VMD.And the relative entropy analysis of the energy eigenvectors of the eigenmode components at the above status was carried out to obtain the identification threshold of capacitance degradation.In practical application,the relative entropy value of the energy of the circuit under test and the normal status was compared with the identification threshold to complete the capacitance status identification.The analysis result shows that this method can identify the capacitance status simply and effectively,and the accuracy is 93.3%.

subway vehiclevehicle capacitancestatus identificationoptimized variational mode decomposition(VMD)energy relative entropy

李小波、曹烁、冯秋峰、白晏年、杨志豪、张浩

展开 >

上海工程技术大学 城市轨道交通学院 上海 201620

地铁车辆 车载电容 状态识别 优化变分模态分解 能量相对熵

国家自然科学基金资助

51907117

2024

上海工程技术大学学报
上海工程技术大学

上海工程技术大学学报

影响因子:0.264
ISSN:1009-444X
年,卷(期):2024.38(1)
  • 13