首页|基于边界学习的食用油桶日期检测

基于边界学习的食用油桶日期检测

扫码查看
在文本不规则形状、高反光和模糊等工业生产环境中,现有文本检测方法存在边框定位不准确以及检测形状局限于矩形框的问题.基于边界学习提出一种统一的、从宽泛到精细的检测框架,主要包括一个特征提取骨干网络、边界建议模块和迭代优化边界变换器模块.特征提取骨干网络采用ResNet网络对图片进行特征提取,由多层扩张卷积组成的边界建议模块用于生成粗略的边界框,边界变换器模块采用编码器-解码器结构,在分类图、距离场和方向场的指导下通过迭代变形逐步完善粗略的边界框.基于自测数据集进行试验,该模型在数据集上的准确率、召回率和F-measure值分别为91.56%、87.38%和89.41%,验证了本算法在食用油桶日期检测的效率和优势.
Edible oil drums date detection based on boundary learning
In the industrial production environments such as irregular shapes of text,high reflectivity and blurring,the existing text detection method have the problems of inaccurate border localization and the limitation of detecting text within rectangular boxes.Based on boundary learning,a unified,broad-to-fine detection framework was proposed.It mainly consists of a feature extraction backbone network,a boundary suggestion module,and an iterative optimized boundary transformer module.ResNet network was used in the feature extraction backbone network to extract features from images.The boundary suggestion module consisted of multi-layer dilation convolution was used to generate rough bounding boxes.Additionally,an encoder-decoder structure was used in boundary transformer module to gradually improve the rough bounding boxes by iterative deformation under the guidance of classification map,distance field and direction field.The results of experiments conducted based on the self-collected datasets show that the accuracy,recall and F-measure values of the model are 91.56% ,87.38% and 89.41% respectively.The efficiency and advantages of the algorithm in the date detection of edible oil drums are verified.

date detectionarbitrary shapesboundary learningmachine vision

沈世玉、杨超宇

展开 >

安徽理工大学人工智能学院,安徽淮南 232001

日期检测 任意形状 边界学习 机器视觉

国家自然科学基金

61873004

2024

上海工程技术大学学报
上海工程技术大学

上海工程技术大学学报

影响因子:0.264
ISSN:1009-444X
年,卷(期):2024.38(2)